Publications by authors named "Jose-Jesus Fernandez"

The flagellar motors of Campylobacter jejuni (C. jejuni) and related Campylobacterota (previously epsilonproteobacteria) feature 100-nm-wide periplasmic "basal disks" that have been implicated in scaffolding a wider ring of additional motor proteins to increase torque, but the size of these disks is excessive for a role solely in scaffolding motor proteins. Here, we show that the basal disk is a flange that braces the flagellar motor during disentanglement of its flagellar filament from interactions with the cell body and other filaments.

View Article and Find Full Text PDF

The cilium is a microtubule-based organelle critical for many cellular functions. Its assembly initiates at a basal body and continues as an axoneme that projects out of the cell to form a functional cilium. This assembly process is tightly regulated.

View Article and Find Full Text PDF

Cryoelectron tomography (cryo-ET) has become an indispensable technology for visualizing in situ biological ultrastructures, where the tilt series alignment is the key step to obtain a high-resolution three-dimensional reconstruction. Specifically, with the advent of high-throughput cryo-ET data collection, there is an increasing demand for high-accuracy and fully automatic tilt series alignment, to enable efficient data processing. Here, we propose Markerauto2, a fast and robust fully automatic software that enables accurate fiducial marker-based tilt series alignment.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets.

View Article and Find Full Text PDF

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD.

View Article and Find Full Text PDF

Fiducial marker detection in electron micrographs becomes an important and challenging task with the development of large-field electron microscopy. The fiducial marker detection plays an important role in several steps during the process of electron micrographs, such as the alignment and parameter calibrations. However, limited by the conditions of low signal-to-noise ratio (SNR) in the electron micrographs, the performance of fiducial marker detection is severely affected.

View Article and Find Full Text PDF

Doublet microtubules (DMTs) provide a scaffold for axoneme assembly in motile cilia. Aside from α/β tubulins, the DMT comprises a large number of non-tubulin proteins in the luminal wall of DMTs, collectively named the microtubule inner proteins (MIPs). We used cryoET to study axoneme DMT isolated from We present the structures of DMT at nanometer and sub-nanometer resolution.

View Article and Find Full Text PDF

Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes. We previously identified double membrane vesicles (DMVs) in the cytoplasm of cells infected with Berne virus (BEV), the prototype member of the Torovirus genus (Nidovirales Order). Our previous analysis by transmission electron microscopy suggested that the DMVs form a reticulovesicular network (RVN) analogous those described for the related severe acute respiratory syndrome coronavirus (SARS-CoV-1).

View Article and Find Full Text PDF

TomoAlign is a software package that integrates tools to mitigate two important resolution limiting factors in cryoET, namely the beam-induced sample motion and the contrast transfer function (CTF) of the microscope. The package is especially focused on cryoET of thick specimens where fiducial markers are required for accurate tilt-series alignment and sample motion estimation. TomoAlign models the beam-induced sample motion undergone during the tilt-series acquisition.

View Article and Find Full Text PDF

Mammalian orthoreoviruses (reoviruses) are nonenveloped, double-stranded RNA viruses that replicate and assemble in cytoplasmic membranous organelles called viral inclusions (VIs). To define the cellular compartments involved in nonlytic reovirus egress, we imaged viral egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs). Electron and confocal microscopy showed that reovirus mature virions are recruited from VIs to modified lysosomes termed sorting organelles (SOs).

View Article and Find Full Text PDF

Summary: We have developed a software tool to improve the image quality in focused ion beam-scanning electron microscopy (FIB-SEM) stacks: PolishEM. Based on a Gaussian blur model, it automatically estimates and compensates for the blur affecting each individual image. It also includes correction for artifacts commonly arising in FIB-SEM (e.

View Article and Find Full Text PDF

Centriole is an essential structure with multiple functions in cellular processes. Centriole biogenesis and homeostasis is tightly regulated. Using electron cryo-tomography (cryoET) we present the structure of procentrioles from .

View Article and Find Full Text PDF
Article Synopsis
  • * The authors propose a new method that uses alignment residuals at 3D fiducial points to estimate sample motion, employing a smoother scattered data interpolation technique.
  • * This new method enhances tomogram quality similar to the polynomial approach but simplifies the motion model determination, making it more practical for the cryoET community.
View Article and Find Full Text PDF

Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series.

View Article and Find Full Text PDF

The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils.

View Article and Find Full Text PDF

Macroautophagy is morphologically characterized by autophagosome formation. Autophagosomes are double-membraned vesicles that sequester cytoplasmic components for further degradation in the lysosome. Basal autophagy is paramount for intracellular quality control in post-mitotic cells but, surprisingly, the number of autophagosomes in post-mitotic neurons is very low, suggesting that alternative degradative structures could exist in neurons.

View Article and Find Full Text PDF

The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process.

View Article and Find Full Text PDF

Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms.

View Article and Find Full Text PDF

Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory.

View Article and Find Full Text PDF

The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γTuRC is assembled from repeating γ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry.

View Article and Find Full Text PDF

Tomo3D is a program for fast tomographic reconstruction on multicore computers. Its high speed stems from code optimization, vectorization with Streaming SIMD Extensions (SSE), multithreading and optimization of disk access. Recently, Advanced Vector eXtensions (AVX) have been introduced in the x86 processor architecture.

View Article and Find Full Text PDF

Classification of subtomograms obtained by cryoelectron tomography (cryo-ET) is a powerful approach to study the conformational landscapes of macromolecular complexes in situ. Major challenges in subtomogram classification are the low signal-to-noise ratio (SNR) of cryo-tomograms, their incomplete angular sampling, the unknown number of classes and the typically unbalanced abundances of structurally distinct complexes. Here, we propose a clustering algorithm named AC3D that is based on a similarity measure, which automatically focuses on the areas of major structural discrepancy between respective subtomogram class averages.

View Article and Find Full Text PDF
Article Synopsis
  • Electron tomography allows for high-resolution 3D visualization of subcellular structures, but segmentation of these structures is challenging due to issues like noise and low contrast.
  • A new computational method using tensor voting improves membrane segmentation by refining local structural information across voxels to generate clearer segmented images.
  • This method proves effective in low signal-to-noise scenarios typical of cryo-tomography and successfully applies to various biological samples, showing better results than traditional template matching techniques.
View Article and Find Full Text PDF