Purpose: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) affects one-third of the global population. Despite its high prevalence, there is a lack of minimally non-invasive diagnostic methods to assess this condition. This study explores the potential of circulating microRNAs (miRNAs) as diagnostic biomarkers for MASLD after a 2-year nutritional intervention.
View Article and Find Full Text PDFBackground And Aims: Obesity is a public health problem. The usual treatment is a reduction in calorie intake and an increase in energy expenditure, but not all individuals respond equally to these treatments. Epigenetics could be a factor that contributes to this heterogeneity.
View Article and Find Full Text PDFDue to the importance of the gut microbiota in the regulation of energy homeostasis, probiotics have emerged as an alternative therapy to ameliorate obesity-related disturbances, including cholesterol metabolism dysregulation, dyslipidemia and inflammation. Therefore, the objectives of this study were to evaluate the effect of the probiotic strain (pA1c®) on the regulation of adiposity, cholesterol and lipid metabolism, inflammatory markers and gut microbiota composition in diet-induced obese rats. Twenty-nine four-week-old male Wistar rats were divided into three groups: rats fed a control diet (CNT group, = 8), rats fed a high fat/high sucrose diet (HFS group, = 11), and rats fed a HFS diet supplemented with pA1c® (pA1c®group, = 10).
View Article and Find Full Text PDFAcute intermittent porphyria (AIP) is a metabolic disorder caused by mutations in the porphobilinogen deaminase (PBGD) gene, encoding the third enzyme of the heme synthesis pathway. Although AIP is characterized by low clinical penetrance (~1% of PBGD mutation carriers), patients with clinically stable disease report chronic symptoms and frequently show insulin resistance. This study aimed to evaluate the beneficial impact of nutritional interventions on correct carbohydrate dysfunctions in a mouse model of AIP that reproduces insulin resistance and altered glucose metabolism.
View Article and Find Full Text PDFChanges in gut microbiota composition and in epigenetic mechanisms have been proposed to play important roles in energy homeostasis, and the onset and development of obesity. However, the crosstalk between epigenetic markers and the gut microbiome in obesity remains unclear. The main objective of this study was to establish a link between the gut microbiota and DNA methylation patterns in subjects with obesity by identifying differentially methylated DNA regions (DMRs) that could be potentially regulated by the gut microbiota.
View Article and Find Full Text PDFThis study aims to analyze the relationship between gut microbiota composition and health parameters through specific biochemical markers and food consumption patterns in the Spanish population. This research includes 60 Spanish adults aged 47.3 ± 11.
View Article and Find Full Text PDFCurr Opin Clin Nutr Metab Care
July 2022
Epigenetics
January 2022
Differentially methylated regions (DMR) are genomic regions with different methylation status. The aim of this research was to identify DMRs in subjects with obesity that predict the response to a weight-loss dietary intervention and its association with metabolic variables. Based on the change in body mass index (BMI), 201 subjects with overweight and obesity were categorized in tertiles according to their response to a hypocaloric diet: Responders (R; n = 64) and Non-Responders (NR; n = 63).
View Article and Find Full Text PDFBackground: The determinants that mediate the interactions between microRNAs and the gut microbiome impacting on obesity are scarcely understood. Thus, the aim of this study was to investigate possible interactions between circulating microRNAs and gut microbiota composition in obesity.
Method: The sample comprised 78 subjects with obesity (cases, body mass index (BMI): 30-40 kg/m) and 25 eutrophic individuals (controls, BMI ≤ 25 kg/m).
The gut microbiome has been recognized as a tool for understanding adiposity accumulation and for providing personalized nutrition advice for the management of obesity and accompanying metabolic complications. The genetic background is also involved in human energy homeostasis. In order to increase the value of nutrigenetic dietary advice, the interplay between genetics and microbiota must be investigated.
View Article and Find Full Text PDFThis study aimed to nutrigenetically screen gene-diet and gene-metabolic interactions influencing insulin resistance (IR) phenotypes. A total of 232 obese or overweight adults were categorized by IR status: non-IR (HOMA-IR (homeostatic model assessment - insulin resistance) index ≤ 2.5) and IR (HOMA-IR index > 2.
View Article and Find Full Text PDFBackground: Chronic diseases arise as a consequence of an unhealthy lifestyle primarily characterized by physical inactivity and unbalanced diets. Regular physical activity can improve health, and there is consistent evidence that these improvements may be the result of epigenetic modifications.
Objective: To identify epigenetic modificationsas outcomes of exercise interventions related to specific metabolic alterations.
The distribution of adipose tissue is influenced by gender and by age, shifting from subcutaneous to visceral depots with longevity, increasing the development of several aging-related diseases and manifestations such as obesity, metabolic syndrome, and insulin resistance. Epigenetics might have an important role in aging processes. The aim of this research was to investigate the interactions between aging and epigenetic processes and the role of visceral adipose tissue, insulin resistance, and dyslipidaemia.
View Article and Find Full Text PDFEpigenetic signatures such as DNA methylation may be associated with specific obesity traits in different tissues. The onset and development of some obesity-related complications are often linked to visceral fat accumulation. The aim of this study was to explore DNA methylation levels in peripheral white blood cells to identify epigenetic methylation marks associated with waist circumference (WC).
View Article and Find Full Text PDFHyperglycaemia and type 2 diabetes (T2D) are associated with impaired insulin secretion and/or insulin action. Since few studies have addressed the relation between DNA methylation patterns with elaborated surrogates of insulin secretion/sensitivity based on the intravenous glucose tolerance test (IVGTT), the aim of this study was to evaluate the association between DNA methylation and an insulin sensitivity index based on IVGTT (calculated insulin sensitivity index (CSi)) in peripheral white blood cells from 57 non-diabetic female volunteers. The CSi and acute insulin response (AIR) indexes, as well as the disposition index (DI = CSi × AIR), were estimated from abbreviated IVGTT in 49 apparently healthy Chilean women.
View Article and Find Full Text PDFCurrent evidence proposes diet quality as a modifiable risk factor for mental or emotional impairments. However, additional studies are required to investigate the effect of dietary patterns and weight loss on improving psychological symptoms. The aim of this investigation was to evaluate the effect of energy-restriction, prescribed to overweight and obese participants, on anxiety and depression symptoms, as well as the potential predictive value of some baseline psychological features on weight loss.
View Article and Find Full Text PDFInsulin resistance (IR) is a hallmark of type 2 diabetes, metabolic syndrome and cardiometabolic risk. An epigenetic phenomena such as DNA methylation might be involved in the onset and development of systemic IR. The aim of this study was to explore the genetic DNA methylation levels in peripheral white blood cells with the objective of identifying epigenetic signatures associated with IR measured by the Homeostatic Model Assessment of IR (HOMA-IR) following an epigenome-wide association study approach.
View Article and Find Full Text PDFThe adenylate cyclase 3 () gene is involved in the regulation of several metabolic processes including the development and function of adipose tissue. The effects of the rs10182181 genetic variant on changes in body composition depending on the macronutrient distribution intake after 16 weeks of the dietary intervention were tested. The genetic variant was genotyped in 147 overweight or obese subjects, who were randomly assigned to one of the two diets varying in macronutrient content: a moderately-high-protein diet and a low-fat diet.
View Article and Find Full Text PDFDNA methylation could be reversible and mouldable by environmental factors, such as dietary exposures. The objective was to analyse whether an intervention with two Mediterranean diets, one rich in extra-virgin olive oil (MedDiet + EVOO) and the other one in nuts (MedDiet + nuts), was influencing the methylation status of peripheral white blood cells (PWBCs) genes. A subset of 36 representative individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED-Navarra) trial, with three intervention groups in high cardiovascular risk volunteers: MedDiet + EVOO, MedDiet + nuts, and a low-fat control group.
View Article and Find Full Text PDFRecent studies have found that tumor-infiltrating lymphocytes (TIL) expressing PD-1 can recognize autologous tumor cells, suggesting that cells derived from PD-1 TILs can be used in adoptive T-cell therapy (ACT). However, no study thus far has evaluated the antitumor activity of PD-1-selected TILs In two mouse models of solid tumors, we show that PD-1 allows identification and isolation of tumor-specific TILs without previous knowledge of their antigen specificities. Importantly, despite the high proportion of tumor-reactive T cells present in bulk CD8 TILs before expansion, only T-cell products derived from sorted PD-1, but not from PD-1 or bulk CD8 TILs, specifically recognized tumor cells.
View Article and Find Full Text PDFViral clearance during acute hepatitis C virus (HCV) infection is associated with the induction of potent antiviral T-cell responses. Since dendritic cells (DC) are essential in the activation of primary T-cell responses, gene expression was analyzed in DC from patients during acute HCV infection. By using microarrays, gene expression was compared in resting and activated peripheral blood plasmacytoid (pDC) and myeloid (mDC) DC from acute HCV resolving patients (AR) and from patients who become chronically infected (ANR), as well as in healthy individuals (CTRL) and chronically-infected patients (CHR).
View Article and Find Full Text PDFThe lack of antiviral cellular immune responses in patients with chronic hepatitis C virus (HCV) infection suggests that T-cell vaccines may provide therapeutic benefit. Due to the central role that dendritic cells (DC) play in the activation of T-cell responses, our aim was to carry out a therapeutic vaccination clinical trial in HCV patients using DC. Five patients with chronic HCV infection were vaccinated with three doses of 5 × 10(6) or 10(7) autologous DC transduced with a recombinant adenovirus encoding NS3 using the adapter protein CFh40L, which facilitates DC transduction and maturation.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) are considered to be the principal type-I IFN (IFN-I) source in response to viruses, whereas the contribution of conventional DCs (cDCs) has been underestimated because, on a per-cell basis, they are not considered professional IFN-I-producing cells. We have investigated their respective roles in the IFN-I response required for CTL activation. Using a nonreplicative virus, baculovirus, we show that despite the high IFN-I-producing abilities of pDCs, in vivo cDCs but not pDCs are the pivotal IFN-I producers upon viral injection, as demonstrated by selective pDC or cDC depletion.
View Article and Find Full Text PDF