Publications by authors named "Jose-Carlos Garcia-Borron"

Cutaneous melanoma, a lethal skin cancer, arises from malignant transformation of melanocytes. Solar ultraviolet radiation (UVR) is a major environmental risk factor for melanoma since its interaction with the skin generates DNA damage, either directly or indirectly via oxidative stress. Pheomelanin pigments exacerbate oxidative stress in melanocytes by UVR-dependent and independent mechanisms.

View Article and Find Full Text PDF

Mahogunin Ring Finger 1 (MGRN1), a ubiquitin ligase expressed in melanocytes, interacts with the α melanocyte-stimulating hormone receptor, a well-known melanoma susceptibility gene. Previous studies showed that MGRN1 modulates the phenotype of mouse melanocytes and melanoma cells, with effects on pigmentation, shape, and motility. Moreover, MGRN1 knockdown augmented the burden of DNA breaks in mouse cells, indicating that loss of MGRN1 promoted genomic instability.

View Article and Find Full Text PDF

Mahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III-IV.

View Article and Find Full Text PDF

The mouse mutation abrogating Mahogunin Ring Finger-1 (MGRN1) E3 ubiquitin ligase expression causes hyperpigmentation, congenital heart defects and neurodegeneration. To study the pathophysiology of MGRN1 loss, we compared -knockout melanocytes with genetically matched controls and melan-md1 () melanocytes. MGRN1 knockout induced a more differentiated and adherent phenotype, decreased motility, increased the percentage of cells in the S phase of the cell cycle and promoted genomic instability, as shown by stronger γH2AX labelling, increased burden of DNA breaks and higher abundance of aneuploid cells.

View Article and Find Full Text PDF

Little is known on whether melanocortin 1 receptor (MC1R) associated cutaneous melanoma (CM) risk varies depending on histological subtype and body site, and whether tumour thickness at diagnosis (the most important prognostic factor for CM patients) differs between MC1R variant carriers and wild-type individuals. We studied the association between MC1R variants and CM risk by histological subtype, body site, and Breslow thickness, using the database of the M-SKIP project. We pooled individual data from 15 case-control studies conducted during 2005-2015 in Europe and the USA.

View Article and Find Full Text PDF

The melanocortin 1 receptor (MC1R) is a major determinant of skin pigmentation and sensitivity to ultraviolet radiation. When stimulated by its natural agonists, it promotes the switch from synthesis of poorly photoprotective and lightly colored pheomelanins to production of photoprotective and darker eumelanins. In addition to an unusually high number of single nucleotide polymorphisms, the MC1R is expressed as 3 protein-coding splice variants.

View Article and Find Full Text PDF
Article Synopsis
  • MC1R gene variants may increase the risk of melanoma in children and adolescents, as indicated by a study comparing young melanoma patients to adult melanoma patients and healthy adults.
  • The research utilized a large international cohort from multiple countries, analyzing genetic data and calculating the odds of developing melanoma associated with MC1R variants.
  • Results showed that young patients had a higher likelihood of carrying these variants compared to adults, with significant increases in specific variants such as Val60Leu and Asp294His, which were more prevalent in the younger group.
View Article and Find Full Text PDF

Caffeic acid derivatives represent promising lead compounds in the search for tyrosinase inhibitors to be used in the treatment of skin local hyperpigmentation associated to an overproduction or accumulation of melanin. We recently reported the marked inhibitory activity of a conjugate of caffeic acid with dihydrolipoic acid, 2--lipoylcaffeic acid (LCA), on the tyrosine hydroxylase (TH) and dopa oxidase (DO) activities of mushroom tyrosinase. In the present study, we evaluated a more lipophilic derivative, 2--lipoyl caffeic acid methyl ester (LCAME), as an inhibitor of tyrosinase from human melanoma cells.

View Article and Find Full Text PDF

Purpose: Melanoma represents an important public health problem, due to its high case-fatality rate. Identification of individuals at high risk would be of major interest to improve early diagnosis and ultimately survival. The aim of this study was to evaluate whether variants predicted melanoma risk independently of at-risk phenotypic characteristics.

View Article and Find Full Text PDF

The melanocortin 1 receptor gene (MC1R), a well-established melanoma susceptibility gene, regulates the amount and type of melanin pigments formed within epidermal melanocytes. MC1R variants associated with increased melanoma risk promote the production of photosensitizing pheomelanins as opposed to photoprotective eumelanins. Wild-type (WT) MC1R activates DNA repair and antioxidant defenses in a cAMP-dependent fashion.

View Article and Find Full Text PDF

The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3).

View Article and Find Full Text PDF

During the past decade, melanins and melanogenesis have attracted growing interest for a broad range of biomedical and technological applications. The burst of polydopamine-based multifunctional coatings in materials science is just one example, and the list may be expanded to include melanin thin films for organic electronics and bioelectronics, drug delivery systems, functional nanoparticles and biointerfaces, sunscreens, environmental remediation devices. Despite considerable advances, applied research on melanins and melanogenesis is still far from being mature.

View Article and Find Full Text PDF

The melanocortin 1 receptor (MC1R), a G protein-coupled receptor preferentially expressed in melanocytes, mediates the pigmentary effects of α melanocyte-stimulating hormone (αMSH). MC1R is also expressed in other cutaneous cell types, particularly keratinocytes and dermal fibroblasts, suggesting non-pigmentary actions of the αMSH/MC1R system. Böhm and Stegemann now report a dramatic effect of mouse Mc1r functional status on susceptibility to skin fibrosis and collagen types I and III metabolism, in a study combining the powerful mouse model provided by the natural Mc1r(e/e) knockout and an established model of skin fibrosis.

View Article and Find Full Text PDF

Despite considerable advances in the past decade, melanin research still suffers from the lack of universally accepted and shared nomenclature, methodologies, and structural models. This paper stems from the joint efforts of chemists, biochemists, physicists, biologists, and physicians with recognized and consolidated expertise in the field of melanins and melanogenesis, who critically reviewed and experimentally revisited methods, standards, and protocols to provide for the first time a consensus set of recommended procedures to be adopted and shared by researchers involved in pigment cell research. The aim of the paper was to define an unprecedented frame of reference built on cutting-edge knowledge and state-of-the-art methodology, to enable reliable comparison of results among laboratories and new progress in the field based on standardized methods and shared information.

View Article and Find Full Text PDF

Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations.

View Article and Find Full Text PDF

The melanocortin (MC) system is probably the best characterized neuropeptide network of the skin. Most cutaneous cell types express MC receptors (MC-Rs) and synthesize MCs, such as alpha-melanocyte-stimulating hormone (alpha-MSH), that act in autocrine and paracrine fashion. In human skin cells, activation of adenylate cyclase by MCs occurs at 10(-6)-10(-9) M doses of the ligand, but effects are induced in some cell types at subnanomolar concentrations.

View Article and Find Full Text PDF

Tyrosinase is the rate-limiting enzyme in melanin biosynthesis. It is an N-glycosylated, copper-containing transmembrane protein, whose post-translational processing involves intracytoplasmic movement from the endoplasmic reticulum to the Golgi and, eventually, to the melanosome. The expression of the tyrosinase (Tyr) gene is controlled by several regulatory regions including a locus control region (LCR) located 15 kb upstream from the promoter region.

View Article and Find Full Text PDF

The melanotropic actions of alpha-melanocyte-stimulating hormone (alpha-MSH) and other melanocortins are mediated by activation of the melanocortin 1 receptor (MC1R). This G protein-coupled receptor is positively coupled to Gs and triggers the cyclic adenosine mono-phosphate (cAMP) pathway. Mutations of the MC1R gene are associated with skin type and pigmentation phenotypes, and with increased risk of skin cancers.

View Article and Find Full Text PDF

The alpha-melanocyte-stimulating hormone (alphaMSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of alphaMSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma.

View Article and Find Full Text PDF