Publications by authors named "Jose-Carlos Del Rio"

Recent experimental work has revealed that the hydroxystilbene piceatannol can function as a monomeric unit in the lignification of palm fruit endocarp tissues. Results indicated that piceatannol homo-couples and cross-couples with monolignols through radical reactions and is integrally incorporated into the lignin polymer. The current work reports on the thermodynamics of the proposed reactions using density functional theory calculations.

View Article and Find Full Text PDF

Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one] is a flavone that has been found to be incorporated in grass lignin polymers via 4'⁻O⁻β coupling. Herein, we investigated the tricin-lignin structure using nuclear magnetic resonance (NMR) methods by comparing the 1H⁻13C heteronuclear correlation (HSQC) NMR spectra of the isolated lignin with a series of dimeric and trimeric tricin-4'⁻O⁻β-ether model compounds. Results showed that the tricin moiety significantly affects the chemical shift of the Cβ/Hβ of 4'⁻O⁻β unit, producing peaks at around δC/δH 82.

View Article and Find Full Text PDF

Following an integrated approach, Eucalyptus nitens wood samples were subjected to consecutive stages of aqueous fractionation and organosolv delignification, in order to separate hemicelluloses (mainly converted into soluble products from the aqueous stage) from lignin (largely converted into soluble fragments in the organosolv stage) and from cellulose (accumulated in the solid phase from pulping). The compositions of selected reaction media were studied by selected spectrophotometric, spectrometric, chromatographic, and nuclear magnetic resonance methods; and the solid phases from treatments were studied by diffractometry and scanning electron microscopy. The experimental information from the above tasks provides a deep insight on the yields, properties and potential applications of the target fractions in the scope of biorefineries.

View Article and Find Full Text PDF

Lignin, the plant cell wall polymer that binds fibers together but makes processing difficult, is traditionally formed from three monomers, the so-called monolignols (-coumaryl, coniferyl, and sinapyl alcohols). Recently, we discovered, in grass lignins, a phenolic monomer that falls outside the canonical lignin biosynthetic pathway, the flavone tricin. As we show here, palm fruit (macaúba [], carnauba [], and coconut []) endocarps contain lignin polymers derived in part from a previously unconsidered class of lignin monomers, the hydroxystilbenes, including the valuable compounds piceatannol and resveratrol.

View Article and Find Full Text PDF

Caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) and caffeic acid-O-methyltransferase (COMT) are key enzymes in the biosynthesis of coniferyl and sinapyl alcohols, the precursors of guaiacyl (G) and syringyl (S) lignin subunits. The function of these enzymes was characterized in single and double mutant maize plants. In this work, we determined that the comt (brown-midrib 3) mutant plants display a reduction of the flavonolignin unit derived from tricin (a dimethylated flavone), demonstrating that COMT is a key enzyme involved in the synthesis of this compound.

View Article and Find Full Text PDF

Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear.

View Article and Find Full Text PDF

Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed 'candidate substrate product pair' algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry.

View Article and Find Full Text PDF

Coumarate 3-hydroxylase (C3H) catalyzes a key step of the synthesis of the two main lignin subunits, guaiacyl (G) and syringyl (S) in dicotyledonous species. As no functional data are available in regards to this enzyme in monocotyledonous species, we generated C3H1 knock-down maize plants. The results obtained indicate that C3H1 participates in lignin biosynthesis as its down-regulation redirects the phenylpropanoid flux: as a result, increased amounts of p-hydroxyphenyl (H) units, lignin-associated ferulates and the flavone tricin were detected in transgenic stems cell walls.

View Article and Find Full Text PDF

The internal pith of a high energy plant, Elephant grass (EG), was more extensively degraded (>50% dry matter) compared to the outer cortex (31%) or the whole stem (35%) by an enzyme preparation from Humicola insolens, Ultraflo. Reducing sugars and acetic acid release from the pith was also higher compared to the cortex. Supplementation of Ultraflo with a type-C feruloyl esterase increased the level of deacetylation but also led to reduced solubilisation.

View Article and Find Full Text PDF

Chemical modification of eucalypt lignin was investigated during kraft pulping and chlorine-free bleaching by comparing milled wood lignin, kraft lignin, and pulp enzymatic residual lignins. The syringyl-to-guaiacyl ratio (S/G) from analytical pyrolysis slightly changed during pulping and bleaching (S/G, 3-4) but was higher in the kraft lignin. Semiquantitative heteronuclear single quantum correlation (HSQC) nuclear magnetic resonance (NMR) showed that the relative amount of beta-O-4' (around 80% side chains) and resinol type substructures (15%) was slightly modified during pulping and oxygen delignification.

View Article and Find Full Text PDF