Publications by authors named "Jose Yanez"

In South America, Tambaqui (Colossoma macropomum) stands as the primary target for aquaculture, yet breeding programs for this Amazon native species are in their early stages. While high-density single nucleotide polymorphism (SNP) arrays are pivotal for aquaculture breeding, their costs can be prohibitive for non- or semi-industrial species. To overcome this, a cost-effective approach involves developing low-density SNP arrays followed by genotype imputation to higher densities.

View Article and Find Full Text PDF

Background: Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown.

Results: Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.

View Article and Find Full Text PDF

Background: Expansion of genomic resources for the Pacific white shrimp (Litopenaeus vannamei), such as the construction of dense genetic linkage maps, is crucial for the application of genomic tools in order to improve economically relevant traits. Sexual dimorphism exists in Pacific white shrimp, and the mapping of the sex-determination region in this species may help in future reproductive applications. We have constructed male, female, and sex-averaged high-density genetic maps using a 50 K single-nucleotide polymorphism (SNP) array, followed by a genome-wide association study (GWAS) to identify genomic regions associated with sex in white shrimp.

View Article and Find Full Text PDF

There is growing evidence that the microbiome influences host phenotypic variation. Incorporating information about the holobiont - the host and its microbiome - into genomic prediction models may accelerate genetic improvements in farmed animal populations. Importantly, these models must account for the indirect effects of the host genome on microbiome-mediated phenotypes.

View Article and Find Full Text PDF

Cobia () is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown.

View Article and Find Full Text PDF

Dense single nucleotide polymorphism (SNP) arrays are essential tools for rapid high-throughput genotyping for many genetic analyses, including genomic selection and high-resolution population genomic assessments. We present a high-density (200 K) SNP array developed for the Eastern oyster (Crassostrea virginica), which is a species of significant aquaculture production and restoration efforts throughout its native range. SNP discovery was performed using low-coverage whole-genome sequencing of 435 F1 oysters from families from 11 founder populations in New Brunswick, Canada.

View Article and Find Full Text PDF

Coho salmon (Oncorhynchus kisutch) are a culturally and economically important species that return from multiyear ocean migrations to spawn in rivers that flow to the Northern Pacific Ocean. Southern stocks of coho salmon in Canada and the United States have significantly declined over the past quarter century, and unfortunately, conservation efforts have not reversed this trend. To assist in stock management and conservation efforts, we generated a chromosome-level genome assembly.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) allow the identification of associations between genetic variants and important phenotypes in domestic animals, including disease-resistance traits. Whole Genome Sequencing (WGS) data can help increase the resolution and statistical power of association mapping. Here, we conduced GWAS to asses he facultative intracellular bacterium , which affects farmed rainbow trout, , in Chile using imputed genotypes at the sequence level and searched for candidate genes located in genomic regions associated with the trait.

View Article and Find Full Text PDF

Background: Tambaqui, Colossoma macropomum, is the most important native fish species farmed in South America, particularly in Brazil, where its production is limited in the southern and southeastern regions due to disease outbreaks caused by the parasite Ichthyophthirius multifiliis. Therefore, genome level analysis to understand the genetic architecture of the host resistance against I. multifiliis is fundamental to improve this trait in tambaqui.

View Article and Find Full Text PDF

Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies.

View Article and Find Full Text PDF

Patagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor an important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species.

View Article and Find Full Text PDF

The increasing global demand for food, due to the continuous growth of human population, requires improvements in the efficiency and sustainability of animal production systems. In addition, several challenges facing farming of aquatic and terrestrial organisms need to be overcome to ensure food security in the upcoming decades, e.g.

View Article and Find Full Text PDF

Through imputation of genotypes, genome-wide association study (GWAS) and genomic prediction (GP) using whole-genome sequencing (WGS) data are cost-efficient and feasible in aquaculture breeding schemes. The objective was to dissect the genetic architecture of growth traits under chronic heat stress in rainbow trout () and to assess the accuracy of GP based on imputed WGS and different preselected single nucleotide polymorphism (SNP) arrays. A total of 192 and 764 fish challenged to a heat stress experiment for 62 days were genotyped using a customized 1 K and 26 K SNP panels, respectively, and then, genotype imputation was performed from a low-density chip to WGS using 102 parents (36 males and 66 females) as the reference population.

View Article and Find Full Text PDF

The IPN virus (IPNV) causes a highly contagious disease that affects farmed salmonids. IPNV isolates have been phylogenetically classified into seven genogroups, of which two are present in Chile, genogroups 1 and 5. This study aimed to compare the transcriptomic response of rainbow trout fry challenged with two Chilean isolates of IPNV, RTTX (genogroup 1), and ALKA (genogroup 5).

View Article and Find Full Text PDF

Scarce genomic resources have limited the development of breeding programs for serrasalmid fish Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu), the key native freshwater fish species produced in South America. The main objectives of this study were to design a dense SNP array for this fish group and to validate its performance on farmed populations from several locations in South America. Using multiple approaches based on different populations of tambaqui and pacu, a final list of 29,575 and 29,612 putative SNPs was selected, respectively, to print an Axiom AFFYMETRIX (THERMOFISHER) SerraSNP array.

View Article and Find Full Text PDF

Chilean aquaculture mainly produces salmonids and molluscs. Salmonid production has been questioned by its excessive use of antimicrobials. This study aimed to investigate the bacterial microbiota composition of Mytilus spp.

View Article and Find Full Text PDF

Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods.

View Article and Find Full Text PDF

Sea lice (Caligus rogercresseyi) is an ectoparasite which causes major production losses in the salmon aquaculture industry worldwide. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two of the most susceptible salmonid species to sea lice infestation. The objectives of this study were to: (1) identify genomic regions associated with resistance to Caligus rogercresseyi in Atlantic salmon and rainbow trout by performing single-step Genome-Wide Association studies (ssGWAS), and (2) identify candidate genes related to trait variation based on exploring orthologous genes within the associated regions across species.

View Article and Find Full Text PDF

Background: Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and functional genomic studies have highlighted genes and pathways important in the response of salmon to the bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood.

View Article and Find Full Text PDF

Up to 50% of cancer patients and up to 90% of those in terminal stages experience pain associated with disease progression, poor quality of life, and social impact on caregivers. This study aimed to establish standards for the accreditation of oncological pain management in healthcare organizations. A mixed methods approach was used.

View Article and Find Full Text PDF

Background: Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping.

View Article and Find Full Text PDF

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is a severe bacterial disease in the Chilean salmon farming industry. Vaccines and antibiotics are the current strategies to fight SRS; however, the high frequency of new epizootic events confirms the need to develop new strategies to combat this disease. An innovative opportunity is perturbing the host pathways used by the microorganisms to replicate inside host cells through host-directed antimicrobial drugs (HDAD).

View Article and Find Full Text PDF

Background: Pacu (Piaractus mesopotamicus) is one of the most important Neotropical aquaculture species from South America. Disease outbreaks caused by Aeromonas hydrophila infection have been considered significant contributors to the declining levels of pacu production. The current implementation of genomic selection for disease resistance has been adopted as a powerful strategy for improvement in fish species.

View Article and Find Full Text PDF

Nile tilapia belongs to the second most cultivated group of fish in the world, mainly because of its favorable characteristics for production. Genetic improvement programs and domestication process of Nile tilapia may have modified the genome through selective pressure, leaving signals that can be detected at the molecular level. In this work, signatures of selection were identified using genome-wide SNP data, by two haplotype-based (iHS and Rsb) and one F based method.

View Article and Find Full Text PDF

The characterization of runs of homozygosity (ROH), using high-density single nucleotide polymorphisms (SNPs) allows inferences to be made about the past demographic history of animal populations and the genomic ROH has become a common approach to characterize the inbreeding. We aimed to analyze and characterize ROH patterns and compare different genomic and pedigree-based methods to estimate the inbreeding coefficient in two pure lines (POP A and B) and one recently admixed line (POP C) of coho salmon () breeding nuclei, genotyped using a 200 K Affymetrix Axiom myDesign Custom SNP Array. A large number and greater mean length of ROH were found for the two "pure" lines and the recently admixed line (POP C) showed the lowest number and smaller mean length of ROH.

View Article and Find Full Text PDF