Phys Chem Chem Phys
May 2024
The metathesis reaction has been an important tool in both organic and inorganic synthetic chemistry. More specifically in polymer chemistry, ring opening metathesis polymerization (ROMP), the formation of an active metal-carbene species (MCHR), has been widely used. The elucidation of the mechanism for ROMP opened the way for the development of well-defined catalysts, suited to local conditions.
View Article and Find Full Text PDFNucleophilic substitution at saturated carbon is a crucial class of organic reactions, playing a pivotal role in various chemical transformations that yield valuable compounds for society. Despite the well-established S1 and S2 mechanisms, secondary substrates, particularly in solvolysis reactions, often exhibit a borderline pathway. A molecular-level understanding of these processes is fundamental for developing more efficient chemical transformations.
View Article and Find Full Text PDFThe role played by the metal - support (MSI) and metal - metal (MMI) interactions on two important processes in controlling the catalyst performance - nucleation and molecular adsorption - has been investigated using density functional theory (DFT), by means of B3LYP functional, combined with localized molecular orbital energy decomposition analysis (LMOEDA), and natural bond orbital (NBO) calculations, with aid of a Pd/γ-alumina (110D) model (Pd/AlOH). Our results indicate the occurrence of an electronic metal - support interaction (EMSI) which induces a most intense charge transfer in the Pd → γ-alumina backdonation direction, most expressive in Pd → Al, promoting an electronic redistribution within the units and attenuating the MMI. Nevertheless, the MSI/MMI synergistic effect seems to favor slightly the nucleation of a fifth palladium atom, leading to a distorted square pyramidal arrangement for Pd.
View Article and Find Full Text PDFPlants from the Garcinia genus have been used worldwide due to their therapeutic properties. Among the various metabolites isolated from this genus, 7-epi-clusianone, a tetraprenylated benzophenone, stands out for its wide range of identified biological activities. This benzophenone can exist in five tautomeric forms, although the benzene-d and chloroform-d solution nuclear magnetic resonance (NMR) spectra revealed only two tautomeric forms (B and C) in equilibrium, with concentration ratio depending on the solvent in which the spectrum was obtained.
View Article and Find Full Text PDFNonlinear optical materials have been investigated recently due to their potential technological applications in information storage and communications. In this context, semi-organic crystals can effectively combine the desired nonlinear optical properties of amino acids with the promising mechanical and thermal properties of inorganic materials. In this work, we have synthesized and characterized a semi-organic crystal of the amino acid L-histidine and hydrofluoric acid and investigated the chemical interactions between the organic and inorganic moieties.
View Article and Find Full Text PDFJ Agric Food Chem
February 2022
To investigate the herbicidal potential of 2,5-diketopiperazines (2,5-DKPs), we applied a known protocol to produce a series of 2,5-DKPs through intramolecular -alkylation of Ugi adducts. However, the method was not successful for the cyclization of adducts presenting aromatic rings with some substituents at the ortho position. Results from DFT calculations showed that the presence of voluminous groups at the ortho position of a benzene ring results in destabilization of the transition structure.
View Article and Find Full Text PDFRecently, structural elucidation of natural products has undergone a revolution. The combined use of different modern spectroscopic methods has allowed obtaining a complete structural assignment of natural products using small amounts of sample. However, despite the extraordinary ongoing advances in spectroscopy, the mischaracterization of natural products has been and remains a recurrent problem, especially when the substance presents several stereogenic centers.
View Article and Find Full Text PDFThe conversion of CO into dimethyl carbonate (DMC) is an environmental and industrial appealing topic because it contributes to reduce the emissions of CO and to increase its use as raw material. In the present study we employed the CAM-B3LYP/def2-SVP DFT approach to evaluate the thermodynamic and kinetic parameters for the catalytic conversion of CO and methanol into DMC. Starting with the activation of four methanol molecules by the [MeSnO] dimer, we computed all the stationary points along the pathway to convert CO and methanol into the DMC.
View Article and Find Full Text PDFThe regioselective formation of α- and β-lapachone via hetero-Diels-Alder reactions was investigated by experimental and computational approaches. The experimentally observed α-selectivity was explored in detail, revealing that the lower energy barrier for the formation of α-lapachone is a result of lower Pauli repulsion throughout the reaction path, when compared to the β-isomer. By comparing equivalent points on both α- and β-lapachone potential energy surfaces (PES), according to the activation strain model (ASM) and energy decomposition analysis (EDA), we were able to demonstrate that the Pauli repulsion term increases more significantly when going from reactants to than to , resulting in lower interaction energy in the early stages of the reaction path and in a later transition state for β-lapachone.
View Article and Find Full Text PDFCombined experimental and mixed implicit/explicit solvation approaches were employed to gain insights into the origin of switchable regioselectivity of acid-catalyzed lapachol cyclization and α-/β-lapachone isomerization. It was found that solvating species under distinct experimental conditions stabilized α- and β-lapachone differently, thus altering the identity of the thermodynamic product. The energy profile for lapachol cyclization revealed that this process can occur with low free-energy barriers (lower than 8.
View Article and Find Full Text PDF1,3-Dipolar cycloaddition (1,3-DC) reactions are powerful synthetic tool to obtain highly functionalized 5-membered heterocycles, starting from a 1,3-dipole and a dipolarophile in a single step. The reactivity of these systems is usually rationalized in terms of Frontier Molecular Orbital Theory (FMOT), which neglects a possible contribution of an open-shell weakly coupled singlet-diradical specie. In this work, the broken-symmetry approach is used to estimate the singlet-diradical character of 18 dipoles of the second period of the periodic table, classified as allyl-type N-centered, allyl-type O-centered, and propargyl-type 1,3-dipoles, providing a rationalization for 1,3-DC reactivity.
View Article and Find Full Text PDFThe Sn-Cl chemical bond of four organotin halides (MeSnCl, EtSnCl, BuSnCl, and PhSnCl) was studied by using relativistic density functional theory in combination with a quantitative energy decomposition analysis to explain the formation of charged species. The σ orbital is the dominant contributor to the stabilization of the Sn-Cl bond, and the π-orbital interactions also have a significant contribution to the stabilization of PhSn cation when the aromatic groups are bonded to the tin atom. The aromaticity of the phenyl groups delocalizes the positive charge, donating electrons to tin atom by conjugation.
View Article and Find Full Text PDF4-Oxoquinolines are a class of organic substances of great importance in medicinal chemistry, due to their biological and synthetic versatility. -1-Alkylated-4-oxoquinoline derivatives have been associated with different pharmacological activities such as antibacterial and antiviral. The presence of a carboxamide unit connected to carbon C-3 of the 4-oxoquinoline core has been associated with various biological activities.
View Article and Find Full Text PDFA series of B3LYP/6-311+G(d,p) calculations of the affinity of monodentate ligands for [Cd(HO)] are performed. Three types of ligands containing O (phosphine oxide, lactam, amide, carboxylic acid, ester, ketone, aldehyde, ether, halohydrin, enol, furan), N (thiocyanate, amine, ammonia, azide), and S (thioester, thioketone, thiol, thiophene, disulfide) interacting atoms are investigated. The results show that phosphine oxide has the largest affinity for the cadmium cation due to the polarization of the P=O bond.
View Article and Find Full Text PDFA new mechanism is proposed for the Ni-catalyzed carboxylation of organoboronates with CO . DFT investigations at the PBE0-D3 level have shown that direct CO addition to the catalysts [Ni(NHC)(Allyl)Cl] (1 , NHC=IMe, IPr, SIPr and IPr*) is kinetically disfavored and formation of the Aresta-type intermediate is unlikely to occur. According to the mechanism proposed here, the carboxylation process starts with addition of the borate species to 1 , followed by transmetalation, CO cycloaddition and carboxylation.
View Article and Find Full Text PDFThis work reports a study about the adsorption of the herbicides diquat and difenzoquat from aqueous medium employing polyurethane foam (PUF) as the adsorbent and sodium dodecylsulfate (SDS) as the counter ion. The adsorption efficiency was shown to be dependent on the concentration of SDS in solution, since the formation of an ion-associate between cationic herbicides (diquat and difenzoquat) and anionic dodecylsulfate is a fundamental step of the process. A computational study was carried out to identify the possible structure of the ion-associates that are formed in solution.
View Article and Find Full Text PDFThe quantum theory of atoms in molecules (QTAIM) and density functional theory (DFT) calculations were employed to investigate the structure and tautomeric equilibrium of epiclusianone, a polyisoprenylated benzophenone with interesting biological activities. Two different exchange-correlation functionals were employed, namely ωB97x-D and M06-2x, including implicit solvent models (benzene and DMSO). Our results for the thermodynamic properties show that the isomer in which the H atom is bonded to the oxygen away from the benzene ring is the most stable tautomer form of the epiclusianone, thus confirming previous charge density analysis from X-ray diffraction data (Martins et al.
View Article and Find Full Text PDFCalcium complexes with bidentate carbonyl ligands are important in biological systems, medicine and industry, where the concentration of Ca is controlled using chelating ligands. The exchange of two water molecules of [Ca(HO)] for one bidentate monosubstituted and homo disubstituted dicarbonyl ligand was investigated using the B3LYP/6-311++G(d,p) method. The ligand substituents NH, OCH, OH, CH, H, F, Cl, CN and NO are functional groups with distinct electron-donating and -withdrawing effects that bond directly to the sp C atom of the carbonyl group.
View Article and Find Full Text PDFThe structures and energies for the Huisgen 1,3-dipolar cycloaddition reactions of methyl and ethyl azides with some cyclooctynes and dibenzocyclooctynes were computed at the B3LYP/6-311++G(d,p) level. The activation strain model (ASM) and quantitative molecular orbital (MO) theory were used to investigate the reactivity and regiochemistry in these reactions. The energy decomposition analysis (EDA) was used to identify the intrinsic electronic factor that lead to the preferential formation of 1,7-regiochemistry products.
View Article and Find Full Text PDFThe interaction between CO2 and 1,2-diaminoethane was computed using pure and hybrid density functionals. The CAM-B3LYP and wB97X-D functionals using a triple-ζ basis set that includes diffuse and polarization functions are the best functionals for calculating the relative energies of the zwitterion intermediate compared to a coupled-cluster with a single, double and non-iterative triple excitation (CCSD(T)) approach extrapolated to a complete basis set limit. With the two functionals and the triple-ζ basis set, the zwitterion is 1.
View Article and Find Full Text PDFTwo series of flexible dicyanomethylene compounds, specifically, class 1 and class 2 compounds, have been designed and synthesised. In class 1 compounds, the dicyanomethylene groups are separated by glycol chain spacers of different lengths, whereas, in class 2 compounds, the spacers are alkyl linkers of different lengths. The notion underlying the design of these compounds is that in class 1 molecules, the spacers contain donor oxygen atoms that could not only form hydrogen bonds during the course of crystal packing but also promote withdrawing effects that modify the photophysical and electrochemical properties of these molecules in solution; in contrast, these effects would be absent for class 2 molecules.
View Article and Find Full Text PDFThe affinity of the pentaaqua Mg(2+) cation for a set of para-substituted imino [HN = CHC₆H₄(R)] and thiocarbonyl [S = CHC₆H₄(R)] ligands (R = H, F, Cl, Br, OH, OCH₃, CH₃, CN, NH₂ and NO₂) was analyzed with DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6-DH2) methods. The interaction enthalpy was calculated to quantify the affinity of the Mg(2+) cation for the ligands. Additionally, geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction.
View Article and Find Full Text PDFA series of (E) and (Z)-ferrocenyl oxindoles were prepared by coupling substituted oxindoles to ferrocenylcarboxyaldehyde in the presence of morpholine as a catalyst. The redox behavior of these isomers was determined by cyclic voltammetry. The effects of the oxindole derivatives on the migration of human breast cancer cells were evaluated using the wound-healing assay and the Boyden chamber cell-migration assay.
View Article and Find Full Text PDFThe affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands.
View Article and Find Full Text PDF