Sequential sampling plans are employed for the rapid characterization of infestations to facilitate decision-making. This study aimed to (i) investigate the spatial distribution of Oligonychus punicae (Hirst) in grapevine crops, (ii) determine the most representative branch, leaf, and leaf region for monitoring, and (iii) develop a sequential sampling plan for decision-making to control O. punicae in the table grape varieties Arra 15, BRS Vitória, Cotton Candy, Sugar Crisp, and Timpson at different phenological stages.
View Article and Find Full Text PDFDirect and indirect ecological interactions, environmental factors, and the phenology of host plants can shape the way mites interact. These relationships interfere with species occurrence and consequently alter the structure and stability of the intraplant community. As predatory mites act as regulators of herbivorous mites, we hypothesized that these mites may occupy a central position in a network of interactions among mite species associated with mango trees, and the occurrence of these species is mediated by environmental variables and the phenological stage of the host plant.
View Article and Find Full Text PDFMultiple arthropod pests can affect the same crop in agricultural systems, requiring the integration of control methods. In the present study, the effects of residual exposure to four broad-spectrum insecticides/acaricides (azadiractin, abamectin, chlorfenapyr, and fenpyroximate) on immature (development and survival time) and adult females (longevity, fecundity, and fertility life table parameters) of the predatory mite Neoseiulus barkeri were evaluated. Additionally, the insecticides/acaricides were categorized according to their selectivity based on the classification proposed by the International Organization for Biological Control (IOBC) for assessing the susceptibility of arthropods in laboratory experiments.
View Article and Find Full Text PDFPredation is an important interaction that can change the structure of arthropod communities across both temporal and spatial scales. In agricultural systems predation can reduce the population levels of several arthropod pest species of a community. This predator-prey interaction involves the predator searching and handling behaviors.
View Article and Find Full Text PDFThe meristematic region of Cocos nucifera fruits can be colonized by various species of mites, including Steneotarsonemus concavuscutum, Steneotarsonemus furcatus, and Aceria guerreronis. The consequence of this colonization is the development of necrotic lesions on the fruit, and sometimes its abortion. Losses are commonly attributed to A.
View Article and Find Full Text PDFThe vegetable leaf miner (Liriomyza sativae) is considered one of the main melon pests, causing serious problems for producers in all growing regions. A promising type of pest control has been use of resistant cultivars, in isolation or associated with other types of control. This study aimed to evaluate the resistance of melon genotypes to L.
View Article and Find Full Text PDF, a predatory mite, has been mentioned as potentially useful for the control of . The objective of this work was to compare the production rates of in closed units containing as food, at different combinations of numbers of predator inoculated, periods of production and volumes of rearing units. Final predator densities increased with increasing production periods up to 30-45 days, reducing afterward.
View Article and Find Full Text PDFAbstract: The dispersion capacity is fundamental to establish a biological control program with parasitoids. This information is used to determine the efficiency and the number of release points. Thus, the objective of this work was to determine the dispersion and to estimate the number of release points of Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae), in sweet corn, cucumber and cabbage in the Ceará State.
View Article and Find Full Text PDFThe objective of this study was to evaluate the Holopothrips fulvus Morgan (Thysanoptera: Phlaeothripidae) population dynamics and to identify dwarf cashew genotypes less infested by the pest in 2015 and 2016, under field conditions. H. fulvus population evaluations were carried out by monthly observations in the plants and using a score scale varying from 0 to 4.
View Article and Find Full Text PDFExp Appl Acarol
November 2018
The accurate characterization of biological control agents is a key step in control programs. Recently, Amblyseius largoensis from Thailand were introduced in Brazil to evaluate their efficiency for the control of the red palm mite, Raoiella indica. The aim of this study was to confirm their identification and to characterize the population from Thailand, comparing it to populations of the Americas and Indian Ocean islands.
View Article and Find Full Text PDFWalking is important to dispersal on plants and colonization of new plants by predatory mites, and this activity is potentially affected by the presence of acaricides. This possibility was investigated in coconut fruits infested with the coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), where colonization by the predator Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae) was monitored. The following acaricides were evaluated for influence on the process of colonization by the predatory mite: abamectin, azadirachtin, and fenpyroximate.
View Article and Find Full Text PDFOrganisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A.
View Article and Find Full Text PDFThe coconut production system, in which the coconut mite Aceria guerreronis is considered a key pest, provides an interesting model for integration of biological and chemical control. In Brazil, the most promising biological control agent for the coconut mite is the phytoseiid predator Neoseiulus baraki. However, acaricides are widely used to control the coconut mite, although they frequently produce unsatisfactory results.
View Article and Find Full Text PDFReducing the losses caused by Aceria guerreronis Keifer has been an arduous task for farmers. However, there are no detailed studies on losses that simultaneously analyse correlated parameters, and very few studies that address the economic viability of chemical control, the main strategy for managing this pest. In this study the objectives were (1) to estimate the crop loss due to coconut mite and (2) to perform a financial analysis of acaricide application to control the pest.
View Article and Find Full Text PDFThe predatory mite Neoseiulus paspalivorus (De Leon) is often found in association with the coconut mite, Aceria guerreronis Keifer. The identification of natural enemies is essential for the definition of biological control strategies. Therefore, the present study aimed to confirm whether the mite populations from different Northeastern Brazilian states identified as N.
View Article and Find Full Text PDFSynthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years.
View Article and Find Full Text PDFThe coconut mite, Aceria guerreronis Keifer, is a major pest of coconut palm in the world. The control of this pest species is done through acaricide applications at short time intervals. However, the predators of this pest may also be affected by acaricides.
View Article and Find Full Text PDFThe dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest.
View Article and Find Full Text PDFThe phytophagous mite Aceria guerreronis Keifer is an important pest of coconut worldwide. A promising method of control for this pest is the use of predatory mites. Neoseiulus baraki (Athias-Henriot) and Proctolaelaps bickleyi Bram are predatory mites found in association with A.
View Article and Find Full Text PDFAceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of coconut in many countries in the Americas, Africa and parts of Asia. Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) is one of the predatory mites most commonly found in association with A. guerreronis in parts of northeast Brazil.
View Article and Find Full Text PDFNeoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) has been reported from the Americas, Africa and Asia, often in association with Aceria guerreronis Keifer (Acari: Eriophyidae), one of the most important pests of coconut (Cocos nucifera L.) in different parts of the world. That phytoseiid has been considered one of the most common predators associated with A.
View Article and Find Full Text PDF