Adipose tissue stores triacylglycerol (TAG) in lipid droplets (LD) and release fatty acids upon lipolysis during energy shortage. We identify ApoL6 as a LD-associated protein mainly found in adipose tissue, specifically in adipocytes. ApoL6 expression is low during fasting but induced upon feeding.
View Article and Find Full Text PDFKings and queens of eusocial termites can live for decades, while queens sustain a nearly maximal fertility. To investigate the molecular mechanisms underlying their long lifespan, we carried out transcriptomics, lipidomics and metabolomics in Macrotermes natalensis on sterile short-lived workers, long-lived kings and five stages spanning twenty years of adult queen maturation. Reproductives share gene expression differences from workers in agreement with a reduction of several aging-related processes, involving upregulation of DNA damage repair and mitochondrial functions.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2021
The prolonged, postweaning fast of northern elephant seal () pups is characterized by a reliance on lipid metabolism and reversible, fasting-induced insulin resistance, providing a unique model to examine the effects of insulin on lipid metabolism. We have previously shown that acute insulin infusion induced a shift in fatty acid metabolism dependent on fasting duration. This study complements the previous study by examining the effects of fasting duration and insulin infusion on circulating levels of oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2021
The postweaning fast of northern elephant seal pups is characterized by a lipid-dependent metabolism and associated with a decrease in plasma glucagon-like peptide-1 (GLP-1), insulin, and glucose and increased gluconeogenesis (GNG) and ketogenesis. We have also demonstrated that exogenous GLP-1 infusion increased plasma insulin despite simultaneous increases in cortisol and glucagon, which collectively present contradictory regulatory stimuli of GNG, ketogenesis, and glycolysis. To assess the effects of GLP-1 on metabolism using primary carbon metabolite profiles in late-fasted seal pups, we dose-dependently infused late-fasted seals with low (LDG; 10 pM/kg; = 3) or high (HDG; 100 pM/kg; = 4) GLP-1 immediately following a glucose bolus (0.
View Article and Find Full Text PDFBrown adipose tissue is a metabolically beneficial organ capable of dissipating chemical energy into heat, thereby increasing energy expenditure. Here, we identify Dot1l, the only known H3K79 methyltransferase, as an interacting partner of Zc3h10 that transcriptionally activates the promoter and other BAT genes. Through a direct interaction, Dot1l is recruited by Zc3h10 to the promoter regions of thermogenic genes to function as a coactivator by methylating H3K79.
View Article and Find Full Text PDFHepatosteatosis, which is frequently associated with development of metabolic syndrome and insulin resistance, manifests when triglyceride (TG) input in the liver is greater than TG output, resulting in the excess accumulation of TG. Dysregulation of lipogenesis therefore has the potential to increase lipid accumulation in the liver, leading to insulin resistance and type 2 diabetes. Recently, efforts have been made to examine the epigenetic regulation of metabolism by histone-modifying enzymes that alter chromatin accessibility for activation or repression of transcription.
View Article and Find Full Text PDFFatty acid and triglyceride synthesis increases greatly in response to feeding and insulin. This lipogenic induction involves coordinate transcriptional activation of various enzymes in lipogenic pathway, including fatty acid synthase and glycerol-3-phosphate acyltransferase. Here, we show that JMJD1C is a specific histone demethylase for lipogenic gene transcription in liver.
View Article and Find Full Text PDFBrown adipose tissue (BAT) is highly metabolically active tissue that dissipates energy via UCP1 as heat, and BAT mass is correlated negatively with obesity. The presence of BAT/BAT-like tissue in humans renders BAT as an attractive target against obesity and insulin resistance. Here, we identify Aifm2, a NADH oxidoreductase domain containing flavoprotein, as a lipid droplet (LD)-associated protein highly enriched in BAT.
View Article and Find Full Text PDFBrown adipose tissue harbors UCP1 to dissipate chemical energy as heat. However, the transcriptional network that governs the thermogenic gene program is incompletely understood. Zc3h10, a CCCH-type zinc finger protein, has recently been reported to bind RNA.
View Article and Find Full Text PDFIntroduction: Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion.
Objective: To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism.
De novo lipogenesis is precisely regulated by nutritional and hormonal conditions. The genes encoding various enzymes involved in this process, such as fatty acid synthase (FASN), are transcriptionally activated in response to insulin. We showed that USF1, a key transcription factor for activation, directly interacted with the Mediator subunit MED17 at the promoter.
View Article and Find Full Text PDFThe role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2016
Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined.
View Article and Find Full Text PDFFatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process.
View Article and Find Full Text PDFFibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups.
View Article and Find Full Text PDFFood deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals.
View Article and Find Full Text PDFProlonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin.
View Article and Find Full Text PDFActivation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk.
View Article and Find Full Text PDFNorthern elephant seal pups naturally endure a 2-3 month post-weaning fast that is associated with activation of systemic renin-angiotensin system (RAS), a decrease in plasma adiponectin (Acrp30), and insulin resistance (IR)-like conditions. Angiotensin II (Ang II) and tumor necrosis factor-alpha (TNF-α) are potential causal factors of IR, while Acrp30 may improve insulin signaling. However, the effects of fasting-induced activation of RAS on IR-like conditions in seals are not well described.
View Article and Find Full Text PDFElephant seals naturally experience prolonged periods of absolute food and water deprivation (fasting). In humans, rats and mice, prolonged food deprivation activates the renin-angiotensin system (RAS) and increases oxidative damage. In elephant seals, prolonged fasting activates RAS without increasing oxidative damage likely due to an increase in antioxidant defenses.
View Article and Find Full Text PDFFood deprivation in mammals results in profound changes in fuel metabolism and substrate regulation. Among these changes are decreased reliance on the counter-regulatory dynamics by insulin-glucagon due to reduced glucose utilization, and increased concentrations of lipid substrates in plasma to meet the energetic demands of peripheral tissues. As the primary storage site of lipid substrates, adipose tissue must then be a primary contributor to the regulation of metabolism in food deprived states.
View Article and Find Full Text PDFMetabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk).
View Article and Find Full Text PDFThe northern elephant seal pup (Mirounga angustirostris) undergoes a 2-3 month post-weaning fast, during which it depends primarily on the oxidation of fatty acids to meet its energetic demands. The concentration of non-esterified fatty acids (NEFAs) increases and is associated with the development of insulin resistance in late-fasted pups. Furthermore, plasma NEFA concentrations respond differentially to an intravenous glucose tolerance test (ivGTT) depending on fasting duration, suggesting that the effects of glucose on lipid metabolism are altered.
View Article and Find Full Text PDFRenin-angiotensin system blockade improves glucose intolerance and insulin resistance, which contribute to the development of metabolic syndrome. However, the contribution of impaired insulin secretion to the pathogenesis of metabolic syndrome is not well defined. To assess the contributions of angiotensin receptor type 1 (AT₁) activation and high glucose intake on pancreatic function and their effects on insulin signaling in skeletal muscle and adipose tissue, an oral glucose tolerance test (oGTT) was performed in five groups (n = 10/group) of rats: 1) lean strain-control 2) obese Otsuka Long-Evans Tokushima Fatty (OLETF), 3) OLETF + angiotensin receptor blocker (ARB; 10 mg/kg · d olmesartan for 6 wk; OLETF ARB), 4) OLETF + 5% glucose water (HG) for 6 wk (OLETF HG), and 5) OLETF + HG + ARB (OLETF HG/ARB).
View Article and Find Full Text PDF