During the last few decades, major advances have been made in photovoltaic systems based on Cu(In,Ga)Se chalcopyrite. However, the most efficient photovoltaic cells are processed under high-energy-demanding vacuum conditions. To lower the costs and facilitate high-throughput production, printing/coating processes are proving to be effective solutions.
View Article and Find Full Text PDFCadmium-free buffer layers deposited by a dry vacuum process are mandatory for low-cost and environmentally friendly Cu(InGa)Se (CIGS) photovoltaic in-line production. Zn(O,S) has been identified as an alternative to the chemical bath deposited CdS buffer layer, providing comparable power conversion efficiencies. Recently, a significant efficiency enhancement has been reported for sputtered Zn(O,S) buffers after an annealing treatment of the complete solar cell stack; the enhancement was attributed to interdiffusion at the CIGS/Zn(O,S) interface, resulting in wide-gap ZnSO islands formation and reduced interface defects.
View Article and Find Full Text PDF