The interaction of a newly synthesized antitumor complex cis-dichloro-1,2-propylenediamine-N,N,N',N'-tetraacetato ruthenium (III) (RAP) with DNA was investigated in vitro through a number of techniques including comet assay, immunoprecipitation, and immunolocalization of certain nucleolar proteins (the upstream binding factor (UBF) and fibrillarin) involved in DNA transcription, rRNA processing, and ribosomal assembly. The results showed that RAP binds to the DNA of two cell lines (H4 and Hs-683) causing a delay in cell proliferation rate leading to a number of cellular modifications. These modifications include DNA-damage assessed by the single cell gel electrophoresis method (comet assay) and variation in the expression of nucleolar proteins; UBF was more abundant in RAP treated cells, this was explained by the high affinity of this protein to DNA modified by RAP.
View Article and Find Full Text PDFIn this study, we used a newly synthesized antitumor complex [RuLCl2]H.4H2O (RAP), having the same antitumor effects as cisplatin but showing lower cytotoxicity. We found that RAP-DNA adducts induce a high expression of proteins with high molecular weight and a low expression of proteins with low molecular weight.
View Article and Find Full Text PDFThe effects exerted by the new complex cis-dichloro-1,2-propylenediaminetetraacetato ruthenium (III), H[RuCl(2)(PDTA-H(2))] [1, RAP], on DNA and cultured tumor cells (ovarian carcinoma TG cell line) were studied. The comparative study of circular dichroism (CD) spectra obtained from DNA and RAP-DNA system evidences the interaction of the complex with DNA. Compound 1 also interacted with tumor TG cells to slow their proliferation rate.
View Article and Find Full Text PDFS-Adenosyl-L-methionine synthase (SAM; ATP: L-methionine adenosyltransferase, EC 2.5.1.
View Article and Find Full Text PDF