This study evaluate growth, gas exchange, solute accumulation and activity of antioxidant enzymes in dwarf cashew clones subjected to salinity. Shoot dry mass reduced 26.8% (CCP06) and 41.
View Article and Find Full Text PDFPlant Cell Rep
March 2019
Mitigation of deleterious effects of salinity promoted by exogenous proline can be partially explained by changes in proline enzymatic metabolism and expression of specific proline-related genes. Proline accumulation is a usual response to salinity. We studied the ability of exogenous proline to mitigate the salt harmful effects in sorghum (Sorghum bicolor) leaves.
View Article and Find Full Text PDFThe salt overly sensitive (SOS) pathway is the only mechanism known for Na extrusion in plant cells. SOS pathway activation involves Ca-sensing proteins, such as calcineurin B-like (CBL) proteins, and CBL-interacting protein kinases (CIPKs). In this signalling mechanism, a transit increase in cytosolic Ca concentration triggered by Na accumulation is perceived by CBL (also known as SOS3).
View Article and Find Full Text PDFJatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development.
View Article and Find Full Text PDFPlant Cell Physiol
March 2017
An effective strategy for re-establishing K+ and Na+ homeostasis is a challenge for the improvement of plant performance in saline soil. Specifically, attempts to understand the mechanisms of Na+ extrusion from plant cells, the control of Na+ loading in the xylem and the partitioning of the accumulated Na+ between different plant organs are ongoing. Our goal was to provide insight into how an external nitrogen source affects Na+ accumulation in Sorghum bicolor under saline conditions.
View Article and Find Full Text PDFCowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity.
View Article and Find Full Text PDFCereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth.
View Article and Find Full Text PDFPretreatment in plants is recognized as a valuable strategy to stimulate plant defenses, leading to better plant development. This study evaluated the effects of H₂O₂ leaf spraying pretreatment on plant growth and investigated the antioxidative mechanisms involved in the response of maize plants to salt stress. It was found that salinity reduced maize seedling growth when compared to control conditions, and H₂O₂ foliar spraying was effective in minimizing this effect.
View Article and Find Full Text PDFJ Plant Physiol
September 2011
The effect of external inorganic nitrogen and K(+) content on K(+) uptake from low-K(+) solutions and plasma membrane (PM) H(+)-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.
View Article and Find Full Text PDFPlant Cell Rep
January 2008
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment.
View Article and Find Full Text PDFThe effect of exogenously applied H2O2 on salt stress acclimation was studied with regard to plant growth, lipid peroxidation, and activity of antioxidative enzymes in leaves and roots of a salt-sensitive maize genotype. Pre-treatment by addition of 1 microM H2O2 to the hydroponic solution for 2 days induced an increase in salt tolerance during subsequent exposure to salt stress. This was evidenced by plant growth, lipid peroxidation and antioxidative enzymes measurements.
View Article and Find Full Text PDF