Publications by authors named "Jose T Egana"

Several clinical issues are associated with reduced oxygen delivery to tissues due to impaired vascular perfusion; moreover, organs procured for transplantation are subjected to severe hypoxia during preservation. Consequently, alternative tissue oxygenation is an active field in biomedical research where several innovative approaches have been recently proposed. Among these, intravascular photosynthesis represents a promising approach as it relies on the intrinsic capacity of certain microorganisms to produce oxygen upon illumination.

View Article and Find Full Text PDF

Aerobic metabolism relies on external oxygen production through photosynthesis and its subsequent transport into each cell of the body via the cardiorespiratory system. This mechanism has successfully evolved over millions of years, enabling animals to inhabit most environments on Earth. However, the insufficient oxygen supply leads to several clinical problems, ranging from non-healing wounds to tumor resistance to therapy.

View Article and Find Full Text PDF

Oxygen is essential for tissue regeneration, playing a crucial role in several processes, including cell metabolism and immune response. Therefore, the delivery of oxygen to wounds is an active field of research, and recent studies have highlighted the potential use of photosynthetic biomaterials as alternative oxygenation approach. However, while plants have traditionally been used to enhance tissue regeneration, their potential to produce and deliver local oxygen to wounds has not yet been explored.

View Article and Find Full Text PDF

As animal cells cannot produce oxygen, erythrocytes are responsible for gas interchange, being able to capture and deliver oxygen upon tissue request. Interestingly, several other cells in nature produce oxygen by photosynthesis, raising the question of whether they could circulate within the vascular networks, acting as an alternative source for oxygen delivery. To address this long-term goal, here some physical and mechanical features of the photosynthetic microalga Chlamydomona reinhardtii were studied and compared with erythrocytes, revealing that both exhibit similar size and rheological properties.

View Article and Find Full Text PDF

Tissue regeneration capabilities vary significantly throughout an organism's lifespan. For example, mammals can fully regenerate until they reach specific developmental stages, after which they can only repair the tissue without restoring its original architecture and function. The high regenerative potential of fetal stages has been attributed to various factors, such as stem cells, the immune system, specific growth factors, and the presence of extracellular matrix molecules upon damage.

View Article and Find Full Text PDF

It is broadly described that almost every step of the regeneration process requires proper levels of oxygen supply; however, due to the vascular disruption in wounds, oxygen availability is reduced, being detrimental to the regeneration process. Therefore, the development of novel biomaterials combined with improved clinical procedures to promote wound oxygenation is an active field of research in regenerative medicine. This case report derives from a cohort of patients enrolled in a previously published ongoing phase I clinical trial (NCT03960164), to assess safety of photosynthetic scaffolds for the treatment of full skin defects.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic wounds struggle to heal primarily due to persistent infections from biofilms, which consist of multiple bacterial species, but the interactions between these infections and the body's response are not fully understood.
  • Researchers studied the behavior of biofilms formed by Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis in collagen scaffolds to analyze their impact on wound healing both in vitro and in vivo.
  • The study found that while mice survived the implantation of these scaffolds, they exhibited significant health issues, revealing complex infection patterns and immune responses in the body, which could help advance treatments for infected wounds.
View Article and Find Full Text PDF

The development of biomaterials to improve wound healing is a critical clinical challenge and an active field of research. As it is well described that oxygen plays a critical role in almost each step of the wound healing process, in this work, an oxygen producing photosynthetic biomaterial was generated, characterized, and further modified to additionally release other bioactive molecules. Here, alginate hydrogels were loaded with the photosynthetic microalgae Chlamydomonas reinhardtii, showing high integration as well as immediate oxygen release upon illumination.

View Article and Find Full Text PDF

As hypoxic tumors show resistance to several clinical treatments, photosynthetic microorganisms have been recently suggested as a promising safe alternative for oxygenating the tumor microenvironment. The relationship between organisms and the effect microalgae have on tumors is still largely unknown, evidencing the need for a simple yet representative model for studying photosynthetic tumor oxygenation in a reproducible manner. Here, we present a 3D photosynthetic tumor model composed of human melanoma cells and the microalgae , both seeded into a collagen scaffold, which allows for the simultaneous study of both cell types.

View Article and Find Full Text PDF

3D bioprinting technology has emerged as a tool that promises to revolutionize the biomedical field, including tissue engineering and regeneration. Despite major technological advancements, several challenges remain to be solved before 3D bioprinted tissues could be fully translated from the bench to the bedside. As oxygen plays a key role in aerobic metabolism, which allows energy production in the mitochondria; as a consequence, the lack of tissue oxygenation is one of the main limitations of current bioprinted tissues and organs.

View Article and Find Full Text PDF

Burn wound progression (BWP) leads to vertical and horizontal injury extension. The "burn comb model" is commonly used, in which a full-thickness burn with intercalated unburned interspaces is induced. We aimed to establish an injury progressing to the intermediate dermis, allowing repeated wound evaluation.

View Article and Find Full Text PDF

Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for organ preservation.

View Article and Find Full Text PDF

Insufficient oxygen supply represents a relevant issue in several fields of human physiology and medicine. It has been suggested that the implantation of photosynthetic cells can provide oxygen to tissues in the absence of a vascular supply. This approach has been demonstrated to be successful in several and models; however, no data is available about their safety in human patients.

View Article and Find Full Text PDF

Impaired wound healing represents an unsolved medical need with a high impact on patients´ quality of life and global health care. Even though its causes are diverse, ischemic-hypoxic conditions and exacerbated inflammation are shared pathological features responsible for obstructing tissue restoration. In line with this, it has been suggested that promoting a normoxic pro-regenerative environment and accelerating inflammation resolution, by reinstating the lymphatic fluid transport, could allow the wound healing process to be resumed.

View Article and Find Full Text PDF

Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand.

View Article and Find Full Text PDF

After skin tissue injury or pathological removal, vascularization timing is paramount in graft survival. As full thickness skin grafts often fail to become perfused over larger surfaces, split-thickness grafts are preferred and can be used together with biomaterials, which themselves are non-angiogenic. One way of promoting vascular ingrowth is to "pre-vascularize" an engineered substitute by introducing endothelial cells (ECs).

View Article and Find Full Text PDF

The recent use of photosynthetic organisms such as Chlamydomonas reinhardtii in biomedical applications has demonstrated their potential for the treatment of acute and chronic tissue hypoxia. Moreover, transgenic microalgae have been suggested as an alternative in situ drug delivery system. In this study, we set out to identify the best available combination of strains and expression vectors to establish a robust platform for the expression of human pro-angiogenic growth factors, i.

View Article and Find Full Text PDF

The study of myocardial transmembrane ion currents is fundamental to understand frequent pathologies such as arrhythmias and ischemia. Conventional electrocardiography (ECG) is not able to record ion currents, while the use of intracellular microelectrodes in a beating heart has technical limitations. Myocardial monophasic action potentials (MAPs) recorded with suction electrodes allow the evaluation of ionic currents similar to those recorded by intracellular glass microelectrodes.

View Article and Find Full Text PDF

The World Health Organization has estimated that, worldwide, cigarette smoking has caused more than 100 million deaths in the last century, a number that is expected to increase in the future. Understanding cigarette smoke toxicity is key for research and development of proper public health policies. The current challenge is to establish a reliable preclinical model to evaluate the effects of cigarette smoke.

View Article and Find Full Text PDF

It has been shown that pre- and postconditioning of ischemically challenged tissue with erythropoietin (EPO) is able to reduce necrosis in a dose-dependent manner. The aim of this study was to determine the tissue-protective effects of different EPO dosages and administration regimes. Three groups of six C57Bl/6-mice each were analyzed: (1) pre- and postconditioning with initial high doses of EPO (starting at 2500 I.

View Article and Find Full Text PDF

Surgical sutures represent the gold standard for wound closure, however, their main purpose is still limited to a mechanical function rather than playing a bioactive role. Since oxygen and pro-regenerative growth factors have been broadly described as key players for the healing process, in this study we evaluated the feasibility of generating photosynthetic sutures that, in addition to mechanical fixation, could locally and stably release oxygen and recombinant human growth factors (VEGF, PDGF-BB, or SDF-1α) at the wound site. Here, photosynthetic genetically modified microalgae were seeded in commercially available sutures and their distribution and proliferation capacity was evaluated.

View Article and Find Full Text PDF

Cigarette smoke is associated with several pathologies including chronic respiratory diseases and cancer. In addition, exposure to cigarette smoke is correlated with impaired wound healing, where a significant decrease in the regenerative capacity of smokers is well documented and broadly considered a negative risk factor after trauma or surgery. So far, some in vitro and in vivo models have been described to study how exposure to cigarette smoke diminishes the regenerative potential in different organisms.

View Article and Find Full Text PDF

Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research.

View Article and Find Full Text PDF

Many therapies using mesenchymal stem cells (MSC) rely on their ability to produce and release paracrine signals with chemotactic and pro-angiogenic activity. These characteristics, however, are mostly studied under standard in vitro culture conditions. In contrast, various novel cell-based therapies imply pre-seeding MSC into bio-artificial scaffolds.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs) on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential.

View Article and Find Full Text PDF