Publications by authors named "Jose Santos-Victor"

Children with Autism Spectrum Disorder (ASD) show severe attention deficits, hindering their capacity to acquire new skills. The automatic assessment of their attention response would provide the therapists with an important biomarker to better quantify their behaviour and monitor their progress during therapy. This work aims to develop a quantitative model, to evaluate the attention response of children with ASD, during robotic-assistive therapeutic sessions.

View Article and Find Full Text PDF

Introduction: Motor Imagery (MI)-based Brain Computer Interfaces (BCI) have raised gained attention for their use in rehabilitation therapies since they allow controlling an external device by using brain activity, in this way promoting brain plasticity mechanisms that could lead to motor recovery. Specifically, rehabilitation robotics can provide precision and consistency for movement exercises, while embodied robotics could provide sensory feedback that can help patients improve their motor skills and coordination. However, it is still not clear whether different types of visual feedback may affect the elicited brain response and hence the effectiveness of MI-BCI for rehabilitation.

View Article and Find Full Text PDF

Humans display remarkable long-term visual memory (LTVM) processes. Even though images may be intrinsically memorable, the fidelity of their visual representations, and consequently the likelihood of successfully retrieving them, hinges on their similarity when concurrently held in LTVM. In this debate, it is still unclear whether intrinsic features of images (perceptual and semantic) may be mediated by mechanisms of interference generated at encoding, or during retrieval, and how these factors impinge on recognition processes.

View Article and Find Full Text PDF

When humans interact with each other, eye gaze movements have to support motor control as well as communication. On the one hand, we need to fixate the task goal to retrieve visual information required for safe and precise action-execution. On the other hand, gaze movements fulfil the purpose of communication, both for reading the intention of our interaction partners, as well as to signal our action intentions to others.

View Article and Find Full Text PDF

Joint attention is the capacity of sharing attention between two agents and an aspect of the environment, through the use of different cues, namely gaze. This capacity is of paramount importance for social skills. People with Autism Spectrum Disorder (ASD) present certain deficits in joint attention.

View Article and Find Full Text PDF

Socially assistive robots may help the treatment of autism spectrum disorder(ASD), through games using dyadic interactions to train social skills. Existing systems are mainly based on simplified protocols which qualitatively evaluate subject performance. We propose a robotic coaching platform for training social, motor and cognitive capabilities, with two main contributions: (i) using triadic interactions(adult, robot and child), with robotic mirroring, and (ii) providing quantitative performance indicators.

View Article and Find Full Text PDF

3D objects (artifacts) are made to fulfill functions. Designing an object often starts with defining a list of functionalities or affordances (action possibilities) that it should provide, known as . Today, designing 3D object models is still a slow and difficult activity, with few Computer-Aided Design (CAD) tools capable to explore the design solution space.

View Article and Find Full Text PDF

Socially assistive robots have shown potential benefits in therapy of child and elderly patients with social and cognitive deficits. In particular, for autistic children, humanoid robots could enhance engagement and attention, thanks to their simplified toy-like appearance and the reduced set of possible movements and expressions. The recent focus on autism-related motor impairments has increased the interest on developing new robotic tools aimed at improving not only the social capabilities but also the motor skills of autistic children.

View Article and Find Full Text PDF

The focus of research in biped locomotion has moved toward real-life scenario applications, like walking on uneven terrain, passing through doors, climbing stairs and ladders. As a result, we are witnessing significant advances in the locomotion of biped robots, enabling them to move in hazardous environments while simultaneously accomplishing complex manipulation tasks. Yet, considering walking in an unknown environment, the efficiency of humanoid robots is still far from being comparable with the human.

View Article and Find Full Text PDF

We present an approach for quantitative assessment of the arm/hand movements in patients with Parkinson's disease (PD), from sensor data acquired with a wearable, wireless armband device (Myo sensor). We propose new that can be adopted by practitioners for the quantitative evaluation of motor performance and support their clinical evaluations. In addition, specific can indicate the presence of the bradykinesia symptom.

View Article and Find Full Text PDF

Background: Traditional rehabilitation sessions are often a slow, tedious, disempowering and non-motivational process, supported by clinical assessment tools, i.e. evaluation scales that are prone to subjective rating and imprecise interpretation of patient's performance.

View Article and Find Full Text PDF

Stereo confidence measures are important functions for global reconstruction methods and some applications of stereo. In this article we evaluate and compare several models of confidence which are defined at the whole disparity range. We propose a new stereo confidence measure to which we call the Histogram Sensor Model (HSM), and show how it is one of the best performing functions overall.

View Article and Find Full Text PDF

We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target.

View Article and Find Full Text PDF

We present a supervised learning algorithm for estimation of generic input-output relations in a real-time, online fashion. The proposed method is based on a generalized expectation-maximization approach to fit an infinite mixture of linear experts (IMLE) to an online stream of data samples. This probabilistic model, while not fully Bayesian, can efficiently choose the number of experts that are allocated to the mixture, this way effectively controlling the complexity of the resulting model.

View Article and Find Full Text PDF

We address the problem of bootstrapping language acquisition for an artificial system similarly to what is observed in experiments with human infants. Our method works by associating meanings to words in manipulation tasks, as a robot interacts with objects and listens to verbal descriptions of the interactions. The model is based on an affordance network, i.

View Article and Find Full Text PDF

We describe a humanoid robot platform--the iCub--which was designed to support collaborative research in cognitive development through autonomous exploration and social interaction. The motivation for this effort is the conviction that significantly greater impact can be leveraged by adopting an open systems policy for software and hardware development. This creates the need for a robust humanoid robot that offers rich perceptuo-motor capabilities with many degrees of freedom, a cognitive capacity for learning and development, a software architecture that encourages reuse & easy integration, and a support infrastructure that fosters collaboration and sharing of resources.

View Article and Find Full Text PDF

In this paper, we present a strategy whereby a robot acquires the capability to learn by imitation following a developmental pathway consisting on three levels: 1) sensory-motor coordination; 2) world interaction; and 3) imitation. With these stages, the system is able to learn tasks by imitating human demonstrators. We describe results of the different developmental stages, involving perceptual and motor skills, implemented in our humanoid robot, Baltazar.

View Article and Find Full Text PDF

Gabor filters are widely applied in image analysis and computer vision applications. This paper describes a fast algorithm for isotropic complex Gabor filtering that outperforms existing implementations. The main computational improvement arises from the decomposition of Gabor filtering into more efficient Gaussian filtering and sinusoidal modulations.

View Article and Find Full Text PDF

We propose a general architecture for action (mimicking) and program (gesture) level visual imitation. Action-level imitation involves two modules. The viewpoint Transformation (VPT) performs a "rotation" to align the demonstrator's body to that of the learner.

View Article and Find Full Text PDF