It has long been assumed that serial homologues are ancestrally similar-polysomerism resulting from a "duplication" or "repetition" of forms-and then often diverge-anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how "homologous" patterning domains do not necessarily mark "homologous" morphological domains, are putting in question this paradigm.
View Article and Find Full Text PDFThe ill-named "logic of monsters" hypothesis of Pere Alberch - one of the founders of modern evo-devo - emphasized the importance of "internal rules" due to strong developmental constraints, linked teratologies to developmental processes and patterns, and contradicted hypotheses arguing that birth defects are related to a chaotic and random disarray of developmental mechanisms. We test these hypotheses using, for the first time, anatomical network analysis (AnNA) to study and compare the musculoskeletal modularity and integration of both the heads and the fore- and hindlimbs of abnormal cyclopic trisomy 18 and anencephalic human fetuses, and of normal fetal, newborn, and adult humans. Our previous works have shown that superficial gross anatomical analyses of these specimens strongly support the "logic of monsters" hypothesis, in the sense that there is an 'order' or 'logic' within the gross anatomical patterns observed in both the normal and abnormal individuals.
View Article and Find Full Text PDFThis paper is part of the emerging field of Evolutionary Developmental Pathology, dedicated to study the links between normal and abnormal development, evolution and human pathologies. We analyzed the head musculoskeletal system of several 'natural mutant' newborn lambs displaying various degrees of abnormality, from mild defects to cebocephaly and to cyclopia, and compared them with humans. Interestingly, muscle defects are less marked than osteological ones, and contrarily to the latter they tend to display left-right assymetries.
View Article and Find Full Text PDF