Publications by authors named "Jose S Davila Costa"

The production of bioethanol and sugar from sugarcane is an important economic activity in several countries. Sugarcane is susceptible to different phytopathogens. Over the last years, the red stripe disease caused by the bacterium subsp.

View Article and Find Full Text PDF

Through the years, the genus Amycolatopsis has demonstrated its biotechnological potential. The need to clean up the environment and produce new antimicrobial molecules led to exploit promising bacterial genera such as Amycolatopsis. In this present work, we analyze the genome of the strain Amycolatopsis tucumanensis AB0 previously isolated from copper-polluted sediments.

View Article and Find Full Text PDF

Anthropogenic activities are often related to the occurrence of simultaneous contaminations with heavy metals and toxic organic compounds. In addition, the increasing demand for food, clothing, and technology has increased the worldwide contamination level. Although it is not fully demonstrated, the high level of contamination in association with the indiscriminate use of antibiotics, led to the appearance of multi-resistant pathogenic microorganisms.

View Article and Find Full Text PDF

The genus Streptomyces is widely recognized for its biotechnological potential. Due to a need to improve crops, clean up the environment and produce novel antimicrobial molecules exploiting Streptomyces has become a priority. To further explore the biotechnological potential of these organisms we analyzed the genome of the strain Streptomyces sp.

View Article and Find Full Text PDF

Old Yellow Enzymes play key roles in several cellular processes and have become an important family of enzymes with biotechnological potential. One of the major challenges of biotechnology consists of the bioremediation of co-polluted soils with organic and inorganic compounds. In co-contaminated areas, chromium normally exists in its more toxic and carcinogenic form Cr(VI).

View Article and Find Full Text PDF

The aims of this study were (1) to isolate new multi-resistant actinobacteria from soil, rhizosphere and plant samples collected from an ancient illegal pesticide storage and (2) to elucidate the effects of these microorganisms developed with maize root exudates on lindane and Cr(VI) removal. Fifty-seven phenotypically different actinobacteria were isolated and four of them, belonging to the genus Streptomyces exhibit tolerance to a mixture of lindane and Cr(VI). Two rhizospheric strains named as Streptomyces sp.

View Article and Find Full Text PDF

Highly contaminated γ-hexachlorocyclohexane (lindane) areas were reported worldwide. Low aqueous solubility and high hydrophobicity make lindane particularly resistant to microbial degradation. Physiological and genetic Streptomyces features make this genus more appropriate for bioremediation compared with others.

View Article and Find Full Text PDF

Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R.

View Article and Find Full Text PDF

Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants.

View Article and Find Full Text PDF

Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms.

View Article and Find Full Text PDF

The bacterium Rhodococcus jostii RHA1 synthesizes large amounts of triacylglycerols (TAGs) under conditions of nitrogen starvation. To better understand the molecular mechanisms behind this process, we performed proteomic studies in this oleaginous bacterium. Upon nitrogen starvation, we observed a re-routing of the carbon flux towards the formation of TAGs.

View Article and Find Full Text PDF

Recently there has been increasing interest in possible biotechnological applications of the bacterial genus Amycolatopsis. This genus originally attracted attention for its antibiotic producing capabilities; although it is actually a multifaceted genus and a more diverse range of studies involving biotechnological processes have now been undertaken. Several works have demonstrated that the versatility shown by these bacteria is valuable in industrial applications.

View Article and Find Full Text PDF

Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches.

View Article and Find Full Text PDF

Copper is a redox-active metal, which acts as a catalyst in the formation of Reactive Oxygen Species (ROS) encouraging oxidative stress. Protection against oxidants is intrinsic to every living cell; however, in stress conditions, cells are forced to increase and expand their antioxidative network. In this work, the novel copper-resistant strain Amycolatopsis tucumanensis and the copper-sensitive Amycolatopsis eurytherma were grown under copper increasing concentrations in order to elucidate the dissimilar effects of the metal on the strains viability, mainly on morphology and antioxidant capacity.

View Article and Find Full Text PDF