Publications by authors named "Jose Ruiz-Franco"

We investigate the link between the internal microstructure of poly(-isopropylacrylamide)-poly(ethylene glycol) methyl ether methacrylate (PNIPAM-PEGMA) microgels, their bulk moduli and the rheological response and structural arrangement in dense suspensions. The low degree of crosslinking combined with the increased hydrophilicity induced by the presence of PEGMA results in a diffuse, star-like density profile of the particle and very low values of the bulk modulus in dilute conditions, as determined by small angle neutron scattering (SANS). The ultrasoft nature of the particle is reflected in the changes of the structural arrangement in dense suspensions, which evidence a strong deswelling and a sharp rise of the bulk modulus at moderate packing fractions.

View Article and Find Full Text PDF

In situ interfacial rheology and numerical simulations are used to investigate microgel monolayers in a wide range of packing fractions, ζ_{2D}. The heterogeneous particle compressibility determines two flow regimes characterized by distinct master curves. To mimic the microgel architecture and reproduce experiments, an interaction potential combining a soft shoulder with the Hertzian model is introduced.

View Article and Find Full Text PDF

Low-crosslinked polymer networks have recently been found to behave auxetically when subjected to small tensions, that is, their Poisson's ratio ν becomes negative. In addition, for specific state points, numerical simulations revealed that diamond-like networks reach the limit of mechanical stability, exhibiting values of ν = -1, a condition that we define as hyper-auxeticity. This behavior is interesting per se for its consequences in materials science but is also appealing for fundamental physics because the mechanical instability is accompanied by evidence of criticality.

View Article and Find Full Text PDF

Correction for 'Concentration and temperature dependent interactions and state diagram of dispersions of copolymer microgels' by José Ruiz-Franco , , 2023, , 3614-3628, https://doi.org/10.1039/D3SM00120B.

View Article and Find Full Text PDF

We investigate by means of small angle neutron scattering experiments and numerical simulations the interactions and inter-particle arrangements of concentrated dispersions of copolymer poly(-isopropylacrylamide)-poly(ethylene glycol methyl ether methacrylate) (PNIPAM-PEGMA) microgels across the volume phase transition (VPT). The scattering data of moderately concentrated dispersions are accurately modeled at all temperatures by using a star polymer form factor and static structure factors calculated from the effective potential obtained from simulations. Interestingly, for temperatures below the VPT temperature (VPTT), the radius of gyration and blob size of the particles significantly decrease with increasing the effective packing fraction in the non-overlapping regime.

View Article and Find Full Text PDF

While most chemical bonds weaken under the action of mechanical force (called slip bond behavior), nature has developed bonds that do the opposite: their lifetime increases as force is applied. While such catch bonds have been studied quite extensively at the single molecule level and in adhesive contacts, recent work has shown that they are also abundantly present as crosslinkers in the actin cytoskeleton. However, their role and the mechanism by which they operate in these networks have remained unclear.

View Article and Find Full Text PDF

The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized.

View Article and Find Full Text PDF

Cells residing in living tissues apply forces to their immediate surroundings to promote the restructuration of the extracellular matrix fibres and to transmit mechanical signals to other cells. Here we use a minimalist model to study how these forces, applied locally by cell contraction, propagate through the fibrous network in the extracellular matrix. In particular, we characterize how the transmission of forces is influenced by the connectivity of the network and by the bending rigidity of the fibers.

View Article and Find Full Text PDF
Article Synopsis
  • * At low temperatures, the microgels have a loose structure resembling a starlike shape, but as the temperature increases, PEG chains become part of the PNIPAM network, resulting in a unique density profile with two dense regions inside.
  • * The location of the PEG chains significantly affects how the microgels interact with each other, revealing that modifying their structure can influence their collective behaviors in new ways.
View Article and Find Full Text PDF

Against common sense, auxetic materials expand or contract perpendicularly when stretched or compressed, respectively, by uniaxial strain, being characterized by a negative Poisson's ratio ν. The amount of deformation in response to the applied force can be at most equal to the imposed one, so that ν = - 1 is the lowest bound for the mechanical stability of solids, a condition here defined as "hyper-auxeticity". In this work, we numerically show that ultra-low-crosslinked polymer networks under tension display hyper-auxetic behavior at a finite crosslinker concentration.

View Article and Find Full Text PDF

Due to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g.

View Article and Find Full Text PDF

The growing interest in the dynamical properties of colloidal suspensions, both in equilibrium and under an external drive such as shear or pressure flow, requires the development of accurate methods to correctly include hydrodynamic effects due to the suspension in a solvent. In the present work, we generalize Multiparticle Collision Dynamics (MPCD) to be able to deal with soft, polymeric colloids. Our methods build on the knowledge of the monomer density profile that can be obtained from monomer-resolved simulations without hydrodynamics or from theoretical arguments.

View Article and Find Full Text PDF

A transition from solid-like to liquid-like behavior occurs when colloidal gels are subjected to a prolonged exposure to a steady shear. This phenomenon, which is characterized by a yielding point, is found to be strongly dependent on the packing fraction. However, it is not yet known how the effective inter-particle potential affects this transition.

View Article and Find Full Text PDF

The numerical investigation of the statics and dynamics of systems in non-equilibrium in general, and under shear flow in particular, has become more and more common. However, not all the numerical methods developed to simulate equilibrium systems can be successfully adapted to out-of-equilibrium cases. This is especially true for thermostats.

View Article and Find Full Text PDF

Colloidal mixtures represent a versatile model system to study transport in complex environments. They allow for a systematic variation of the control parameters, namely size ratio, total volume fraction and composition. We study the effects of these parameters on the dynamics of dense suspensions using molecular dynamics simulations and differential dynamic microscopy experiments.

View Article and Find Full Text PDF

Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e.

View Article and Find Full Text PDF