In this work, we have designed a compact device that can be easily integrated with Ultraviolet-Visible spectrophotometers, utilizing Light Emitting Diode technology for in situ spectrophotometric measurements of photocatalytic reactions. Using our device, we present the test results for the breakdown of amaranth dye with Degussa P25 powder and compare them with those obtained from a conventional arc discharge reactor. The results show that the reaction constants obtained using our device are practically equivalent to those acquired with a conventional reactor.
View Article and Find Full Text PDFMicro/nanomachines (MNMs) correspond to human-made devices with motion in aqueous solutions. There are different routes for powering these devices. Light-driven MNMs are gaining increasing attention as fuel-free devices.
View Article and Find Full Text PDFPlasmonic reversible gas sensors are of paramount importance for the monitoring of indoor environments. Herein, we design and engineer a plasmonic foam, with a high surface area, confined inside a capillary glass tube for the live monitoring of carbon monoxide (CO) in closed environments using surface-enhanced resonance Raman scattering. The illumination of the sensor with light during the flow of air allows the live monitoring of the concentration of atmospheric CO through surface-enhanced resonance Raman scattering.
View Article and Find Full Text PDFHerein, a series of N-doped carbon nanotube (CNx) samples were obtained by modifying the synthesis temperature. Consequently, the proportion of graphitic nitrogen (Ngraph) in the samples was systematically increased as a function of temperature. This allowed evaluation of the role of the CNx graphitic nitrogen in the oxygen reduction reaction (ORR).
View Article and Find Full Text PDFThe use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry.
View Article and Find Full Text PDFLow concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column.
View Article and Find Full Text PDFThe establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale "elbow" junctions and nanotube covalent interconnections.
View Article and Find Full Text PDFThe quantum transport properties of graphene nanoribbon networks are investigated using first-principles calculations based on density functional theory. Focusing on systems that can be experimentally realized with existing techniques, both in-plane conductance in interconnected graphene nanoribbons and tunneling conductance in out-of-plane nanoribbon intersections were studied. The characteristics of the ab initio electronic transport through in-plane nanoribbon cross-points is found to be in agreement with results obtained with semiempirical approaches.
View Article and Find Full Text PDFCoupling of localized surface plasmon resonances results in singular effects at the void space between noble metal nanoparticles. However, implementation of practical applications based on plasmon coupling calls for the high yield production of metal nanoparticle clusters (dimers, trimers, tetramers, …) with small gaps. Therefore, controlled assembly using colloid chemistry methods is an emerging and promising field.
View Article and Find Full Text PDFGraphene nanoribbons can exhibit either quasi-metallic or semiconducting behavior, depending on the atomic structure of their edges. Thus, it is important to control the morphology and crystallinity of these edges for practical purposes. We demonstrated an efficient edge-reconstruction process, at the atomic scale, for graphitic nanoribbons by Joule heating.
View Article and Find Full Text PDFArrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen.
View Article and Find Full Text PDFElectrical current could be efficiently guided in 2D nanotube networks by introducing specific topological defects within the periodic framework. Using semiempirical transport calculations coupled with Landauer-Buttiker formalism of quantum transport in multiterminal nanoscale systems, we provide a detailed analysis of the processes governing the atomic-scale design of nanotube circuits. We found that when defects are introduced as patches in specific sites, they act as bouncing centers that reinject electrons along specific paths, via a wave reflection process.
View Article and Find Full Text PDFWe report the use of chemical vapor deposition (CVD) for the bulk production (grams per day) of long, thin, and highly crystalline graphene ribbons (<20-30 microm in length) exhibiting widths of 20-300 nm and small thicknesses (2-40 layers). These layers usually exhibit perfect ABAB..
View Article and Find Full Text PDFCarbon nanotube growth in the presence of nitrogen has been the subject of much experimental scrutiny, sparking intense debate about the role of nitrogen in the formation of diverse structural features, including shortened length, reduced diameters, and bamboo-like multilayered nanotubules. In this paper, the origin of these features is elucidated using a combination of experimental and theoretical techniques, showing that N acts as a surfactant during growth. N doping enhances the formation of smaller diameter tubes.
View Article and Find Full Text PDF