Transcription implies recruitment of RNA polymerase II and transcription factors (TFs) by DNA melting near transcription start site (TSS). Combining atomic force microscopy and computer modeling, we investigate the structural and dynamical properties of the IL2RA promoter and identify an intrinsically negative supercoil in the PRRII region (containing Elf-1 and HMGA1 binding sites), located upstream of a curved DNA region encompassing TSS. Conformational changes, evidenced by time-lapse studies, result in the progressive positioning of curvature apex towards the TSS, likely facilitating local DNA melting.
View Article and Find Full Text PDFThe replication origins (ORIs) of Schizosaccharomyces pombe, like those in most eukaryotes, are long chromosomal regions localized within A+T-rich domains. Although there is no consensus sequence, the interacting proteins are strongly conserved, suggesting that DNA structure is important for ORI function. We used atomic force microscopy in solution and DNA modelling to study the structural properties of the Spars1 origin.
View Article and Find Full Text PDFLocal DNA melting is integral to fundamental processes such as replication or transcription. In vivo, these two processes do not occur on molecules free in solution but, instead, involve DNA molecules which are organized into DNA/proteins complexes. Atomic force microscopy imaging offers a possibility to look at individual molecules.
View Article and Find Full Text PDFDNA is not only a nucleotide sequence which allows the binding of regulators but its intrinsic structural properties such as curvature and flexibility are also viewed as playing an active role in the regulation of transcription. Our combination of computer modelling and AFM imaging allow direct access to DNA curvature and flexibility. We have searched for these DNA structural features involved in transcription regulation within the IL-2Ralpha gene promoter.
View Article and Find Full Text PDFCurvature and flexibility are structural properties of central importance to genome function. However, due to the difficulties in finding suitable experimental conditions, methods for studying one without the interference of the other have proven to be difficult. We propose a new approach that provides a measure of inherent flexibility of DNA by taking advantage of two powerful techniques, X-ray crystallography and nuclear magnetic resonance.
View Article and Find Full Text PDFThe measurement by atomic force microscope of the contour length of DNA fragments adsorbed on mica has been made as accurate as possible by revisiting the different steps of image acquisition and processing. In air, the DNA helical rise was estimated at 2.97 +/- 0.
View Article and Find Full Text PDF