This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways.
View Article and Find Full Text PDFPorous materials such as isoreticular metal-organic frameworks (IRMOFs) can be applied in several areas that explore the physical adsorption. An area that has gained prominence is fuel gas storage, as it provides the storage of a large amount of gas at low pressure and the purification of combustible gas due to the selectivity of the different chemical environments of its pores. IRMOFs represent an ideal study group due to their wide range of pore sizes resulting from the use of different organic ligands.
View Article and Find Full Text PDFEnvironmental contamination by pesticides is a recurrent problem, and a way to minimize its impacts and provide the reduction of contaminants already in the environment is a challenge. In this context, porous materials such as metal-organic frameworks (MOFs) have gained prominence. MOFs can carry the pesticide when physically or chemically interacting with its pore sites, enabling pesticide capture.
View Article and Find Full Text PDFThe geometric and electronic structure of catalytically relevant molybdenum carbide phases (cubic δ-MoC, hexagonal α-MoC, and orthorhombic β-Mo2C) and their low Miller-index surfaces have been investigated by means of periodic density functional theory (DFT) based calculations with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Comparison to available experimental data indicates that this functional is particularly well suited to study these materials. The calculations reveal that β-Mo2C has a stronger metallic character than the other two polymorphs, both β-Mo2C and δ-MoC have a large ionic contribution, and δ- and α-MoC exhibit the strongest covalent character.
View Article and Find Full Text PDF