Publications by authors named "Jose Ribamar Costa Ferreira-Neto"

Article Synopsis
  • Cowpea is a vital legume grown in water-limited regions of Africa and America, and its yield is influenced by environmental stresses.
  • Thaumatin-like proteins (TLPs) are linked to plant defense and responses to environmental stresses, and this study analyzed their structural diversity and gene expression in cowpea under various stress conditions.
  • The research identified 34 TLP loci, revealed distinct groups through analysis, and demonstrated that TLPs exhibit functional specialization in response to both biotic and abiotic stress, indicating their potential for biotechnological applications.
View Article and Find Full Text PDF

Lectins are known for their specific and reversible binding capacity to carbohydrates. These molecules have been particularly explored in plants due to their reported properties, highlighting antimicrobial, antiviral, anticancer, antiparasitic, insecticidal, and immunoregulatory actions. The increasing availability of lectin and lectin-like sequences in omics data banks provides an opportunity to identify important candidates, inferring their roles in essential signaling pathways and processes in plants.

View Article and Find Full Text PDF

is an important forage and extremophilic plant native to the Brazilian Caatinga semiarid region. It has only recently been subjected to omics-based investigations, and the generated datasets offer insights into biotechnologically significant candidates yet to be thoroughly examined. INSs (inositol and its derivatives) and RFO (raffinose oligosaccharide family) pathways emerge as pivotal candidates, given their critical roles in plant physiology.

View Article and Find Full Text PDF

Helicases, motor proteins present in both prokaryotes and eukaryotes, play a direct role in various steps of RNA metabolism. Specifically, SF2 RNA helicases, a subset of the DEAD-box family, are essential players in plant developmental processes and responses to biotic and abiotic stresses. Despite this, information on this family in the physic nut ( L.

View Article and Find Full Text PDF

is a scientifically orphaned legume found in the Brazilian Caatinga biome (a semi-arid environment). This work utilized omics approaches to investigate some ecophysiological aspects of stress tolerance/resistance in , study its genomic landscape, and predict potential metabolic pathways. Considering its high-confidence conceptual proteome, 1694 (~2.

View Article and Find Full Text PDF

(CABMV) and (CPSMV) threaten cowpea commercial production. This study aimed to analyze Conserved Transcriptional Signatures (CTS) in cowpea's genotypes that are resistant to these viruses. CTS covered up- (UR) or down-regulated (DR) cowpea transcripts in response to CABMV and CPSMV mechanical inoculations.

View Article and Find Full Text PDF

Non-specific lipid transfer proteins (nsLTPs) stand out among plant-specific peptide superfamilies due to their multifaceted roles in plant molecular physiology and development, including their protective functions against pathogens. These antimicrobial agents have demonstrated remarkable efficacy against bacterial and fungal pathogens. The discovery of plant-originated, cysteine-rich antimicrobial peptides such as nsLTPs has paved the way for exploring the mentioned organisms as potential biofactories for synthesizing antimicrobial compounds.

View Article and Find Full Text PDF

Stylosanthes scabra, popularly known as stylo, is native to the Brazilian Caatinga semiarid region and stands out as a drought-tolerant shrub forage crop. This work provides information about the plant response during the first 48 h of water deficit, followed by a rehydration treatment. Besides root transcriptomics data, 13 physiological or biochemical parameters were scrutinized.

View Article and Find Full Text PDF

Lipid transfer proteins (LTPs) are among the most promising plant-exclusive antimicrobial peptides (AMPs). They figure among the most challenging AMPs from the point of view of their structural diversity, functions and biotechnological applications. This review presents a current picture of the LTP research, addressing not only their structural, evolutionary and further predicted functional aspects.

View Article and Find Full Text PDF

Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts.

View Article and Find Full Text PDF

The present work represents a pioneering effort, being the first to analyze genomic and transcriptomic data from (cowpea) kinases. We evaluated the cowpea kinome considering its genome-wide distribution and structural characteristics (at the gene and protein levels), sequence evolution, conservation among Viridiplantae species, and gene expression in three cowpea genotypes under different stress situations, including biotic (injury followed by virus inoculation-CABMV or CPSMV) and abiotic (root dehydration). The structural features of cowpea kinases (VuPKs) indicated that 1,293 VuPKs covered 20 groups and 118 different families.

View Article and Find Full Text PDF

Cenostigma pyramidale is a native legume of the Brazilian semiarid region which performs symbiotic association with arbuscular mycorrhizal fungi (AMF), being an excellent model for studying genes associated with tolerance against abiotic and biotic stresses. In RT-qPCR approach, the use of reference genes is mandatory to avoid incorrect interpretation of the relative expression. This study evaluated the stability of ten candidate reference genes (CRGs) from C.

View Article and Find Full Text PDF

Salinity stress has a significant impact on the gain of plant biomass. Our study provides the first root transcriptome of Cenostigma pyramidale, a tolerant woody legume from a tropical dry forest, under three different salt stress times (30 min, 2 h, and 11 days). The transcriptome was assembled using the RNA sequencing (RNA-Seq) de novo pipeline from GenPipes.

View Article and Find Full Text PDF

Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity.

View Article and Find Full Text PDF

Background: Due to cowpea ability to fix nitrogen in poor soils and relative tolerance to drought and salt stresses, efforts have been directed to identifying genes and pathways that confer stress tolerance in this species. Real-time quantitative PCR (qPCR) has been widely used as the most reliable method to measure gene expression, due to its high accuracy and specificity. In the present study, nine candidate reference genes were rigorously tested for their application in normalization of qPCR data onto roots of four distinct cowpea accessions under two abiotic stresses: root dehydration and salt (NaCl, 100 mM).

View Article and Find Full Text PDF

Drought is the most damaging among the major abiotic stresses. Transcriptomic studies allow a global overview of expressed genes, providing the basis for molecular markers development. Here, the HT-SuperSAGE technique allowed the evaluation of four drought-tolerant cultivars and four-sensitive cultivars, after 24h of irrigation suppression.

View Article and Find Full Text PDF

Plant growth is prone to several unfavorable factors that may compromise or impair development and survival, including abiotic or biotic stressors. Aiming at defending themselves, plants have developed several strategies to survive and adapt to such adversities. Cyclotides are a family of plant-derived proteins that exhibit a diverse range of biological activities including antimicrobial and insecticidal activities that actively participate in plant defense processes.

View Article and Find Full Text PDF

For sessile organisms such as plants, regulatory mechanisms of gene expression are vital, since they remain exposed to climatic and biological threats. Thus, they have to face hazards with instantaneous reorganization of their internal environment. For this purpose, besides the use of transcription factors, the participation of chromatin as an active factor in the regulation of transcription is crucial.

View Article and Find Full Text PDF

The discovery of novel plant resistance (R) genes (including their homologs and analogs) opened interesting possibilities for controlling plant diseases caused by several pathogens. However, due to environmental pressure and high selection operated by pathogens, several crop plants have lost specificity, broad-spectrum or durability of resistance. On the other hand, the advances in plant genome sequencing and biotechnological approaches, combined with the increasing knowledge on Rgenes have provided new insights on their applications for plant genetic breeding, allowing the identification and implementation of novel and efficient strategies that enhance or optimize their use for efficiently controlling plant diseases.

View Article and Find Full Text PDF

Snakins are plant antimicrobial peptides (AMPs) of the Snakin/GASA family, formed by three distinct regions: an N-terminal signal peptide; a variable site; and the GASA domain in the Cterminal region composed by twelve conserved cysteine residues that contribute to the biochemical stability of the molecule. These peptides are known to play different roles in response to a variety of biotic (i.e.

View Article and Find Full Text PDF

One of the most challenging aspects of RT-qPCR data analysis is the identification of reliable reference genes. Ideally, they should be neither induced nor repressed under different experimental conditions. To date, few reference genes have been adequately studied for sugarcane (Saccharum spp.

View Article and Find Full Text PDF

The present work is a pioneer study specifically addressing the aquaporin transcripts in sugarcane transcriptomes. Representatives of the four aquaporin subfamilies (PIP, TIP, SIP, and NIP), already described for higher plants, were identified. Forty-two distinct aquaporin isoforms were expressed in four HT-SuperSAGE libraries from sugarcane roots of drought-tolerant and -sensitive genotypes, respectively.

View Article and Find Full Text PDF

Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance.

View Article and Find Full Text PDF

Natural antisense ranscripts (NAT) are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.).

View Article and Find Full Text PDF