Publications by authors named "Jose Raphael Monteiro Neto"

Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens.

View Article and Find Full Text PDF

Under certain stress conditions, astrocytes operate in aerobic glycolysis, a process controlled by pyruvate dehydrogenase (PDH) inhibition through its E1 α subunit (Pda1) phosphorylation. This supplies lactate to neurons, which save glucose to obtain NADPH to, among other roles, counteract reactive oxygen species. A failure in this metabolic cooperation causes severe damage to neurons.

View Article and Find Full Text PDF

It has been hypothesized that --Parkinson's disease (PD) may be initiated in the gastrointestinal tract, before manifesting in the central nervous system. In this respect, it was demonstrated that lipopolysaccharide (LPS), an endotoxin from gram-negative bacteria, accelerates the in vitro formation of α-synuclein (aSyn) fibrils, whose intracellular deposits is a histological hallmark of the degeneration of dopaminergic neurons in PD. Herein, N-terminal acetylation and missense mutations of aSyn (A30P, A53T, E46K, H50Q and G51D) linked to rare, early-onset forms of familial PD were investigated regarding their effect on aSyn aggregation stimulated by either LPS or small unilamellar lipid vesicles (SUVs).

View Article and Find Full Text PDF

During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein.

View Article and Find Full Text PDF