As one of the key systems of the marine power plant diesel engine, the turbocharger directly affects whether the diesel engine can continuously and stably provide the power required for the ship. Owing to a number of uncontrollable factors, such as harsh working conditions and complex structures, the turbocharger may have various failures, causing it to lose its intended function. At present, the fault diagnosis of the marine turbocharger has not been paid enough attention yet and in most cases, the method of 'ex post diagnosis' is still adopted.
View Article and Find Full Text PDFThe sixth transmembrane segment (TM6) of the CFTR chloride channel has been intensively investigated. The effects of amino acid substitutions and chemical modification of engineered cysteines (cysteine scanning) on channel properties strongly suggest that TM6 is a key component of the anion-conducting pore, but previous cysteine-scanning studies of TM6 have produced conflicting results. Our aim was to resolve these conflicts by combining a screening strategy based on multiple, thiol-directed probes with molecular modeling of the pore.
View Article and Find Full Text PDFPrevious attempts to identify residues that line the pore of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have utilized cysteine-substituted channels in conjunction with impermeant, thiol-reactive reagents like MTSET+ and MTSES-. We report here that the permeant, pseudohalide anion [Au(CN)2]- can also react with a cysteine engineered into the pore of the CFTR channel. Exposure of Xenopus oocytes expressing the T338C CFTR channel to as little as 100 nM [Au(CN)2]- produced a profound reduction in conductance that was not reversed by washing but was reversed by exposing the oocytes to a competing thiol like DTT (dithiothreitol) and 2-ME (2-mercaptoethanol).
View Article and Find Full Text PDF