Publications by authors named "Jose R Pineda"

Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired.

View Article and Find Full Text PDF

The prevalence of central nervous system (CNS) dysfunction as a result of disease or trauma remains a clinically unsolved problem which is raising increased awareness in our aging society. Human Dental Pulp Stem Cells (hDPSCs) are excellent candidates to be used in tissue engineering and regenerative therapies of the CNS due to their neural differentiation ability and lack of tumorigenicity. Accordingly, they have been successfully used in animal models of spinal cord injury, stroke and peripheral neuropathies.

View Article and Find Full Text PDF

The Dental Pulp of permanent human teeth is home to stem cells with remarkable multilineage differentiation ability: human Dental Pulp Stem Cells (DPSCs). These cells display a very notorious expression of pluripotency core factors, and the ability to give rise to mature cell lineages belonging to the three embryonic layers. For these reasons, several researchers in the field have long considered human DPSCs as pluripotent-like cells.

View Article and Find Full Text PDF

Stem cell-based therapies have shown promising results for the regeneration of the nervous system. However, the survival and integration of the stem cells in the neural circuitry is suboptimal and might compromise the therapeutic outcomes of this approach. The development of functional scaffolds capable of actively interacting with stem cells may overcome the current limitations of stem cell-based therapies.

View Article and Find Full Text PDF

Engineered 3D human adipose tissue models and the development of physiological human 3D in vitro models to test new therapeutic compounds and advance in the study of pathophysiological mechanisms of disease is still technically challenging and expensive. To reduce costs and develop new technologies to study human adipogenesis and stem cell differentiation in a controlled in vitro system, here we report the design, characterization, and validation of extracellular matrix (ECM)-based materials of decellularized human adipose tissue (hDAT) or bovine collagen-I (bCOL-I) for 3D adipogenic stem cell culture. We aimed at recapitulating the dynamics, composition, and structure of the native ECM to optimize the adipogenic differentiation of human mesenchymal stem cells.

View Article and Find Full Text PDF

Human Dental Pulp Stem Cells (hDPSCs) are one of the most promising stem cell sources for tissue engineering and regeneration, due to their extraordinary multi-lineage differentiation ability, ease of extraction from biological waste in dental clinics, safe non-tumorigenic phenotype, immune-tolerance upon in vivo transplantation, and great possibilities of application in autologous tissue reconstruction. The in vitro manipulation of hDPSCs paves the way for drug screening and tailor-made regeneration of damaged tissues, in the context of personalized medicine. The neural crest phenotype of these stem cells gives them the capacity to differentiate to a large variety of cell types, including neural-lineage cells.

View Article and Find Full Text PDF

The successful reprogramming of human somatic cells into induced pluripotent stem cells (hiPSCs) represented a turning point in the stem cell research field, owing to their ability to differentiate into any cell type with fewer ethical issues than human embryonic stem cells (hESCs). In mice, PSCs are thought to exist in a naive state, the cell culture equivalent of the immature pre-implantation embryo, whereas in humans, PSCs are in a primed state, which is a more committed pluripotent state than a naive state. Recent studies have focused on capturing a similar cell stage in human cells.

View Article and Find Full Text PDF

Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs.

View Article and Find Full Text PDF

Adult stem cells are a partially quiescent cell population responsible for natural cell renewal and are found in many different regions of the body, including the brain, teeth, bones, muscles, skin, and diverse epithelia, such as the epidermal or intestinal epithelium, among others [...

View Article and Find Full Text PDF

The generation of vasculature is one of the most important challenges in tissue engineering and regeneration. Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types to induce vasculogenesis and angiogenesis as they not only secrete vascular endothelial growth factor (VEGF) but can also differentiate in vitro into both endotheliocytes and pericytes in serum-free culture media. Moreover, hDPSCs can generate complete blood vessels containing both endothelial and mural layers in vivo, upon transplantation into the adult brain.

View Article and Find Full Text PDF

Human glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY).

View Article and Find Full Text PDF

Within the field of neural tissue engineering, there is a huge need for the development of materials that promote the adhesion, aligned migration and differentiation of stem cells into neuronal and supportive glial cells. In this study, we have fabricated bioresorbable elastomeric scaffolds combining an ordered nanopatterned topography together with a surface functionalization with graphene oxide (GO) in mild conditions. These scaffolds allowed the attachment of murine neural stem cells (NSCs) without the need of any further coating of its surface with extracellular matrix adhesion proteins.

View Article and Find Full Text PDF

Background/aims: Human Dental Pulp Stem Cells (hDPSCs) are one of the most promising types of cells to regenerate nerve tissues. Standard DMEM+10% fetal bovine serum (FBS) culture medium allows a fast expansion of hDPSC as a surface-adherent cell monolayer. However, the use of FBS also compromises the clinical use of these protocols, and its longterm presence favors hDPSCs differentiation toward mesenchymal cell-derived lineages, at the expense of a reduced capability to generate neural cells.

View Article and Find Full Text PDF

Dental pulp stem cells (DPSCs) have the capacity to give rise to cells with neuronal-like phenotypes, suggesting their use in brain cell therapies. In the present work, we wanted to address the phenotypic fate of adult genetically unmodified human DPSCs cultured in Neurocult (Stem Cell Technologies), a cell culture medium without serum which can be alternatively supplemented for the expansion and/or differentiation of adult neural stem cells (NSCs). Our results show that non-genetically modified human adult DPSCs cultured with Neurocult NS-A proliferation supplement generated neurosphere-like dentospheres expressing the NSC markers Nestin and glial fibrillary acidic protein (GFAP), but also the vascular endothelial cell marker CD31.

View Article and Find Full Text PDF

Cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF) are two homologous acetyltransferases that are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural stem cell recruitment and activation, progenitor proliferation, as well as newborn cell survival and differentiation. An "excitation-neurogenesis" rule was proposed after the demonstration of the capability of cultured neural stem and progenitor cells to intrinsically sense neuronal excitatory activity.

View Article and Find Full Text PDF

Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most aggressive primary tumor of the central nervous system. Glioma stem cells (GSCs), a small population of tumor cells with stem-like properties, are supposedly responsible for glioblastoma multiforme relapse after current therapies. In approximately thirty percent of glioblastoma multiforme tumors, telomeres are not maintained by telomerase but through an alternative mechanism, termed alternative lengthening of telomere (ALT), suggesting potential interest in developing specific therapeutic strategies.

View Article and Find Full Text PDF

Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis.

View Article and Find Full Text PDF

Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis, generating new neurons throughout life. Until now, their isolation has not been reported, which has hampered studies of their regulatory mechanisms. We sorted by FACS quiescent NSCs and their progeny from the subventricular zone (SVZ) of adult mice according to the expression of the NSC marker LeX/CD15, the EGF receptor (EGFR) and the CD24 in combination with the vital DNA marker Hoechst 33342.

View Article and Find Full Text PDF

Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline.

View Article and Find Full Text PDF

Huntington disease (HD) is a devastating autosomal-dominant neurodegenerative disorder. It is caused by expansion of a CAG repeat in the first exon of the huntingtin (HTT) gene that encodes a mutant HTT protein with a polyglutamine (polyQ) expansion at the amino terminus. Here, we demonstrate that WT HTT regulates ciliogenesis by interacting through huntingtin-associated protein 1 (HAP1) with pericentriolar material 1 protein (PCM1).

View Article and Find Full Text PDF