Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions.
View Article and Find Full Text PDFFerredoxin-NADP+ reductase (FNR) catalyzes the electron transfer from ferredoxin to NADP+ via its flavin FAD cofactor. To get further insights in the architecture of the transient complexes produced during the hydride transfer event between the enzyme and the NADP+ coenzyme we have applied NMR spectroscopy using Saturation Transfer Difference (STD) techniques to analyze the interaction between FNRox and the oxidized state of its NADP+ coenzyme. We have found that STD NMR, together with the use of selected mutations on FNR and of the non-FNR reacting coenzyme analogue NAD+, are appropriate tools to provide further information about the the interaction epitope.
View Article and Find Full Text PDFTwo transient charge-transfer complexes (CTC) form prior and upon hydride transfer (HT) in the reversible reaction of the FAD-dependent ferredoxin-NADP+ reductase (FNR) with NADP+/H, FNR(ox)-NADPH (CTC-1), and FNR(rd)-NADP+ (CTC-2). Spectral properties of both CTCs, as well as the corresponding interconversion HT rates, are here reported for several Anabaena FNR site-directed mutants. The need for an adequate initial interaction between the 2'P-AMP portion of NADP+/H and FNR that provides subsequent conformational changes leading to CTC formation is further confirmed.
View Article and Find Full Text PDFThe flavoenzyme ferredoxin-NADP(+) reductase (FNR) catalyzes the production of NADPH during photosynthesis. The hydride-transfer reactions between the Anabaena mutant Tyr303Ser FNR(rd)/FNR(ox) and NADP(+)/H have been studied both experimentally and theoretically. Stopped-flow pre-steady-state kinetic measurements have shown that, in contrast to that observed for WT FNR, the physiological hydride transfer from Tyr303Ser FNR(rd) to NADP(+) does not occur.
View Article and Find Full Text PDFFerredoxin-NADP+ reductases (FNRs) must determine the coenzyme specificity and allow the transient encounter between N5 of its flavin cofactor and C4 of the coenzyme nicotinamide for efficient hydride transfer. Combined site-directed replacements in different putative determinants of the FNR coenzyme specificity were simultaneously produced. The resulting variants were structurally and functionally analyzed for their binding and hydride transfer abilities to the FNR physiological coenzyme NADP+/H, as well as to NAD+/H.
View Article and Find Full Text PDFUnder iron-deficient conditions Flavodoxin (Fld) replaces Ferredoxin in Anabaena as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). Several residues modulate the Fld interaction with FNR and PSI, but no one appears as specifically critical for efficient electron transfer (ET). Fld shows a strong dipole moment, with its negative end directed towards the flavin ring.
View Article and Find Full Text PDFThree surface hydrophobic residues located at the Anabaena flavodoxin (Fld) putative complex interface with its redox partners were replaced by site-directed mutagenesis. The effects of these replacements on Fld interaction with both its physiological electron donor, photosystem I (PSI), and its electron acceptor, ferredoxin-NADP+ reductase (FNR), were analyzed. Trp57, Ile59, and Ile92 contributed to the optimal orientation and tightening of the FNR:Fld and PSI:Fld complexes.
View Article and Find Full Text PDFContribution of three regions (phosphate-binding, 50's and 90's loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted E(ox/sq) and E(sq/hq) and altered the energetic of the FMN redox states binding profile.
View Article and Find Full Text PDFThe mechanism of hydride transfer between Anabaena FNR and NADP+/H was analysed using for the first time stopped-flow photodiode array detection and global analysis deconvolution. The results indicated that the initial spectral changes, occurring within the instrumental dead time upon reaction of FNR with NADP+/H, included not only the initial interaction and complex formation, but also the first subsequent steps of the sequential reactions that involve hydride transfer. Two different charge-transfer complexes formed prior and upon hydride transfer, FNRox-NADPH and FNRrd-NADP+.
View Article and Find Full Text PDFIntramolecular interaction networks in proteins are responsible for heterotropic ligand binding cooperativity, a biologically important, widespread phenomenon in nature (e.g., signaling transduction cascades, enzymatic cofactors, enzymatic allosteric activators or inhibitors, gene transcription, or repression).
View Article and Find Full Text PDFFerredoxin-NADP(+) reductase catalyses NADP(+) reduction, being specific for NADP(+)/H. To understand coenzyme specificity determinants and coenzyme specificity reversion, mutations at the NADP(+)/H pyrophosphate binding and of the C-terminal regions have been simultaneously introduced in Anabaena FNR. The T155G/A160T/L263P/Y303S mutant was produced.
View Article and Find Full Text PDFBiochemical and structural studies indicate that electrostatic and hydrophobic interactions are critical in the formation of optimal complexes for efficient electron transfer (ET) between ferredoxin-NADP(+) reductase (FNR) and ferredoxin (Fd). Moreover, it has been shown that several charged and hydrophobic residues on the FNR surface are also critical for the interaction with flavodoxin (Fld), although, so far, no key residue on the Fld surface has been found to be the counterpart of such FNR side chains. In this study, negatively charged side chains on the Fld surface have been individually modified, either by the introduction of positive charges or by their neutralization.
View Article and Find Full Text PDF