The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.
View Article and Find Full Text PDFSenescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies.
View Article and Find Full Text PDFOmega-3 (ω3) fatty acids are widely investigated for their anti-inflammatory potential, however, there is little evidence regarding their action in the lung parenchyma in the context of obesity. The objective is to investigate the effects of flaxseed oil (FS), rich in α-linolenic (C18:3 - ω3), on the lungs of obese mice. Mice were fed a high-fat diet (HF) for 8 weeks to induce obesity.
View Article and Find Full Text PDFAlthough unfolded protein response (UPR) is essential for cellular protection, its prolonged activation may induce apoptosis, compromising cellular longevity. The aging process increases the endoplasmic reticulum (ER) stress in skeletal muscle. However, whether combined exercise can prevent age-induced ER stress in skeletal muscle remains unknown.
View Article and Find Full Text PDFObesity is a worldwide multifactorial disease caused by an imbalance in energy metabolism, increasing adiposity, weight gain, and promoting related diseases such as diabetes, cardiovascular diseases, neurodegeneration, and cancer. Recent findings have reported that metabolic stress related to obesity induces a mitochondrial stress response called mitochondrial unfolded protein response (UPR), a quality control pathway that occurs in a nuclear DNA-mitochondria crosstalk, causing transduction of chaperones and proteases under stress conditions. The duality of UPR signaling, with both beneficial and detrimental effects, acts in different contexts depending on the tissue, cell type, and physiological states, affecting the mitochondrial function and efficiency and the metabolism homeostasis during obesity, which remains not fully clarified.
View Article and Find Full Text PDFLife Sci
May 2024
The aim was to understand the direct impact of aerobic short-term exercise on lipid metabolism, specifically in regulating the mitochondrial carrier homolog 2 (MTCH2) and how it interferes with lipid metabolism in mesenteric adipose tissue. Swiss mice were divided into three groups: control, sedentary obese, and exercised obese. The obese groups were induced into obesity for fourteen weeks of a high-fat diet, and the trained submitted to seven aerobic exercise sessions.
View Article and Find Full Text PDFWhite adipose tissue (WAT) controls energy storage, expenditure, and endocrine function. Rho-kinase (ROCK) is related to impaired thermogenesis, downregulation of preadipocyte differentiation, and adipokine production. Furthermore, WAT ROCK responds to metabolic stress from high-fat diets or diabetes.
View Article and Find Full Text PDFThe anti-inflammatory role of physical exercise is mediated by interleukin 10 (IL-10), and their release is possibly upregulated in response to IL-6. Previous studies demonstrated that mice lacking IL-6 (IL-6 KO mice) exhibited diminished exercise tolerance, and reduced strength. Rev-erbα, a transcriptional suppressor involved in circadian rhythm, has been discovered to inhibit the expression of genes linked to bodily functions, encompassing inflammation and metabolism.
View Article and Find Full Text PDFObjective: The mitochondrial unfolded protein response (UPR) is an adaptive cellular response to stress to ensure mitochondrial proteostasis and function. Here we explore the capacity of physical exercise to induce UPR in the skeletal muscle.
Methods: Therefore, we combined mouse models of exercise (swimming and treadmill running), pharmacological intervention, and bioinformatics analyses.
Am J Physiol Endocrinol Metab
November 2023
Obesity can exacerbate the systemic inflammatory process, leading to increased infiltration of monocytes in white adipose tissue (WAT) and polarization of these cells into pro-inflammatory M1 macrophages, while reducing the population of anti-inflammatory M2 macrophages. Aerobic exercise has been shown to be effective in reducing the pro-inflammatory profile. However, the impact of strength training and the duration of training on macrophage polarization in the WAT of obese individuals have not been widely studied.
View Article and Find Full Text PDFJ Nutr Biochem
September 2023
The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days.
View Article and Find Full Text PDFJ Nutr Biochem
September 2023
High-fat diet consumption causes hypothalamic inflammation, dysregulating the leptin pathway, which, in turn, compromises the modulation of hypothalamic neuronal activities and predisposes obesity development. Intermittent fasting (IF) and exercise training (ET) have been demonstrated as efficient interventions to modulate hypothalamic inflammation and neuronal activity. However, no studies have evaluated whether combining these interventions could induce better results in reestablishing hypothalamic homeostasis disrupted by high-fat diet intake.
View Article and Find Full Text PDFPhysical training is a potent therapeutic approach for improving mitochondrial health through peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) signaling pathways. However, comprehensive information regarding the physical training impact on PGC-1α in the different physiological systems with advancing age is not fully understood. This review sheds light on the frontier-of-knowledge data regarding the chronic effects of exercise on the PGC-1α signaling pathways in rodents and humans.
View Article and Find Full Text PDFCell Mol Life Sci
April 2023
Objective: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet.
View Article and Find Full Text PDFThe mechanisms of autophagy have been related to Alzheimer's disease (AD) pathogenesis by the endosomal-lysosomal system, having a critical function in forming amyloid-β (Aβ) plaques. Nevertheless, the exact mechanisms mediating disease pathogenesis remain unclear. The transcription factor EB (TFEB), a primary transcriptional autophagy regulator, improves gene expression, mediating lysosome function, autophagic flux, and autophagosome biogenesis.
View Article and Find Full Text PDFGluten intolerance is associated with several disorders in the body. Although research has grown in recent years, the understanding of its impact on different tissues and the effects of physical exercise in mitigating health problems in the condition of gluten intolerance are still limited. Therefore, our objective was to test whether gliadin would affect metabolism and inflammation in liver tissue and whether aerobic physical exercise would mitigate the negative impacts of gliadin administration in rodents.
View Article and Find Full Text PDFIt is known that long-term high-fat diet (HF) feeding drastically affects the adipose tissue, contributing to metabolic disorders. Recently, short-term HF consumption was shown to affect different neuronal signaling pathways. Thus, we aimed to evaluate the inflammatory effects of a short-term HF and whether a diet containing omega-3 fatty acid fats from flaxseed oil (FS) has protective effects.
View Article and Find Full Text PDFDysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-β hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown.
View Article and Find Full Text PDFAims/hypothesis: Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance.
View Article and Find Full Text PDFMany conditions, such as inflammation and physical exercise, can induce endoplasmic reticulum (ER) stress. Toll-like Receptor 4 (TLR4) can trigger inflammation and ER stress events. However, there are still no data in the literature regarding the role of TLR4 in ER stress during exercise in skeletal muscle.
View Article and Find Full Text PDFAging can modify the morphology and function of the liver, such as generating a decrease in the mitochondria content, autophagy, and cell senescence. Although exercise training has several beneficial effects on hepatic metabolism, its actions on autophagy processes, mitochondrial function, and cellular senescence need to be more widely explored. The present study verified the effects of aging and exercise on hepatic circadian markers, autophagy, and mitochondria activity in 24-month-old mice with a combined exercise training protocol.
View Article and Find Full Text PDFThe transcriptional repressor REV-ERB-α, encoded by Nuclear Receptor Subfamily 1 Group D Member 1 (Nr1d1), has been considered to play an essential role in the skeletal muscle oxidative capacity adaptation and muscle mass control. Also, this molecule regulates autophagy via the repression of autophagy-related genes both in skeletal muscle and brain regions. Classically, training programs based on endurance or strength characteristics enhance skeletal muscle mass content and/or oxidative capacity, leading to autophagy activation in several tissues.
View Article and Find Full Text PDFOmega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view.
View Article and Find Full Text PDF