Ir-catalyzed arene C-H borylations (CHB) of anilines can be highly ortho selective by using a small Beg (eg = ethane-1,2-diol) as the borylating reagent. Unfortunately, the products are prone to decomposition, and transesterification with pinacol is required prior to isolation. This work offers a solution by adjusting the size of the diboron reagent.
View Article and Find Full Text PDFTetraalkoxydiborons can be easily prepared by acid-catalyzed reactions of tetrahydroxydiboron or its anhydride with trialkyl orthoformates. Addition of diols to these reaction mixtures afforded diboron diolates in high yield. In both cases, removal of volatile byproducts is all that is required for the isolation of the diboron.
View Article and Find Full Text PDFThe development of practical synthetic protocols integrating novel technologies may enable rapid and broad exploration of chemical space in medicinal chemistry campaigns. Cross-electrophile coupling (XEC) allows the diversification of an aromatic core with alkyl halides to increase the sp character. Herein, we apply two alternative approaches via either photo- or electro-catalyzed XEC and showcase their complementarity to access novel tedizolid analogs.
View Article and Find Full Text PDFRegioselectivities in catalytic C-H borylations (CHBs) have been rationalized using simplistic steric models and correlations with nuclear magnetic resonance (NMR) chemical shifts. However, regioselectivity can be significant for important substrate classes where none would be expected from these arguments. In this study, intramolecular hydrogen bonding (IMHB) can lead to steric shielding effects that can direct Ir-catalyzed CHB regiochemistry.
View Article and Find Full Text PDFA versatile and efficient method to prepare borylated arenes furnished with alkyl, alkenyl, alkynyl, aryl, and heteroaryl functional groups is developed by merging Ir-catalyzed C-H borylations (CHB) with a chemoselective palladium-catalyzed cross-coupling of triorganoindium reagents (Sarandeses-Sestelo coupling) with aryl halides bearing a boronic ester substituent. Using triorganoindium cross-coupling reactions to introduce unsaturated moieties enables the synthesis of borylated arenes that would be difficult to access through the direct application of the CHB methodology. The sequential double catalyzed procedure can be also performed in one vessel.
View Article and Find Full Text PDFBorylated aryl alkynes have been synthesized via one-pot iridium catalyzed C-H borylation (CHB)/Sonogashira cross-coupling of aryl bromides. Direct borylation of aryl alkynes encountered problems related to the reactivity of the alkyne under CHB conditions. However, tolerance of aryl bromides to CHB made possible a subsequent Sonogashira cross-coupling to access the desired borylated aryl alkynes.
View Article and Find Full Text PDFPara C-H borylations (CHB) of tetraalkylammonium sulfates and sulfamates have been achieved using bipyridine-ligated Ir boryl catalysts. Selectivities can be modulated by both the length of the alkyl groups in the tetraalkylammonium cations and the substituents on the bipyridine ligands. Ion pairing, where the alkyl groups of the cation shield the meta C-H bonds in the counteranions, is proposed to account for para selectivity.
View Article and Find Full Text PDF