Publications by authors named "Jose R Leiza"

Polycarboxylate ether (PCE) superplasticisers have been widely used in cement formulations. However, it is not until recently that several studies have analysed the relationship between the properties and the molecular structure. In the present work, PCEs with different side chain lengths and charge densities synthesised through free radical copolymerisation are used to analyse the effect they have on the hydration of ordinary Portland cement (OPC).

View Article and Find Full Text PDF

Particle size evolution in seeded semibatch emulsion polymerization is monitored by two real-time monitoring techniques: online turbidity spectroscopy (TUS) and inline photon density wave spectroscopy (PDWS). An automatic dilution system that withdraws a sample from the reactor and upon dilution transfers to the measurement cell is used for the online TUS analysis. A PDWS probe is immersed in the reactor and collects inline the scattered light directly from the reacting latex.

View Article and Find Full Text PDF

Producing backbone degradable copolymers via free-radical copolymerization is a promising, yet challenging method to develop more sustainable materials for many applications. In this work, we present the copolymerization of 2-methylen-1,3-dioxepane (MDO) with crotonic acid derivative esters. MDO can copolymerize by radical ring-opening polymerization incorporating degradable ester moieties in the polymer backbone, although this can often be difficult due to the very unfavorable reactivity ratios.

View Article and Find Full Text PDF

The increasing demands for sustainable energy storage technologies have prompted extensive research in the development of eco-friendly materials for lithium-ion batteries (LIBs). This research article presents the design of biobased latexes, which are fluorine-free and rely on renewable resources, based on isobornyl methacrylate (IBOMA) and 2-octyl acrylate (2OA) to be used as binders in batteries. Three different compositions of latexes were investigated, varying the ratio of IBOMA and 2OA: (1) Poly2OA homopolymer, (2) Poly(2OA--IBOMA) random copolymer, and (3) PolyIBOMA homopolymer.

View Article and Find Full Text PDF

Particle size and particle size distribution (PSD) are important properties of polymer latexes because they strongly affect the film formation and the rheological properties of the latexes. Thus, monitoring the particle size is of paramount importance during the production of waterborne polymeric dispersions, for which online/inline measurements of the particle size are required. Herein, turbidity spectroscopy (TUS) is used to measure the particle size of nanoparticles in dispersed media.

View Article and Find Full Text PDF

Polymer colloids are complex materials that have the potential to be used in a vast array of applications. One of the main reasons for their continued growth in commercial use is the water-based emulsion polymerization process through which they are generally synthesized. This technique is not only highly efficient from an industrial point of view but also extremely versatile and permits the large-scale production of colloidal particles with controllable properties.

View Article and Find Full Text PDF

In this paper, two phosphate functionalized acrylic binders are formulated to yield direct-to-metal paints without using corrosion inhibitors. The difference between both binders is the addition of polystearylacrylate crystalline nanodomains in one of them, and an amorphous methyl methacylate-co-butyl acrylate copolymer in the other. The water sensitivity, mechanical stability, adhesion, and the performance of the paints against corrosion (high humidity resistance, accelerated weathering, and salt-spray tests) are assessed and compared with a DTM paint formulated from a commercial binder.

View Article and Find Full Text PDF

Lactide-valerolactone copolymers have potential application in the packaging sector. Different copolymers were synthesized, and the kinetics of the copolymerization reactions and the microstructure of the copolymers were analysed. Lactide showed higher reactivity than valerolactone which leads to composition drift through the reaction.

View Article and Find Full Text PDF

Composite solid electrolytes including inorganic nanoparticles or nanofibers which improve the performance of polymer electrolytes due to their superior mechanical, ionic conductivity, or lithium transference number are actively being researched for applications in lithium metal batteries. However, inorganic nanoparticles present limitations such as tedious surface functionalization and agglomeration issues and poor homogeneity at high concentrations in polymer matrixes. In this work, we report on polymer nanoparticles with a lithium sulfonamide surface functionality (LiPNP) for application as electrolytes in lithium metal batteries.

View Article and Find Full Text PDF

Asymmetric-Flow Field-Flow Fractionation is a very powerful technique for measuring the molar mass distribution of polymers with complex microstructures. The analysis of some samples such as self-crosslinkable latexes requires to directly dissolve the polymer dispersion in the eluent (THF) without drying it, and this work studies the effect of the presence of this water in those analysis. Taking a polystyrene latex as model system, it was observed that the measured molar mass and radius of gyration increased as the concentration of water in the sample increased.

View Article and Find Full Text PDF

CeO nanoparticles were incorporated in waterborne binders containing high biobased content (up to 70%) in order to analyze the anticorrosion performance for direct to metal coatings. Biobased binders were synthesized by batch miniemulsion polymerization of 2-octyl acrylate and isobornyl methacrylate monomers using a phosphate polymerizable surfactant (Sipomer PAM200) that lead to the formation of phosphate functionalized latexes. Upon the direct application of such binders on steel, the functionalized polymer particles were able to interact with steel, creating a thin phosphatization layer between the metal and the polymer and avoiding flash rust.

View Article and Find Full Text PDF

Green electrospinning is a relatively new promising technology in which a polymer (latex) can be spun from an aqueous dispersion with the help of a template polymer. This method is a green, clean and safe technology that is able to spin hydrophobic polymers using water as an electrospinning medium. In this article, a systematic study that investigates the influence of the template polymer molar mass, the total solids content of the initial dispersion and the particle/template ratio is presented.

View Article and Find Full Text PDF

Growing environmental concerns are enforcing sustainable recycling processes for glass substrates, especially bottles, where a fast cleaning and minimization of the use of solvents is desired. In this process, labels and adhesives are mostly removed by the addition of harsh reagents, alkaline solutions, or high temperature, increasing economic costs and harming the environment. Herein, high performance and biobased waterborne pressure-sensitive adhesives with fast removability in water have been developed using small percentages of isosorbide (derived from glucose)-based methacrylate monomers.

View Article and Find Full Text PDF

An event-driven approach based on dynamic optimization and nonlinear model predictive control (NMPC) is investigated together with inline Raman spectroscopy for process monitoring and control. The benefits and challenges in polymerization and morphology monitoring are presented, and an overview of the used mechanistic models and the details of the dynamic optimization and NMPC approach to achieve the relevant process objectives are provided. Finally, the implementation of the approach is discussed, and results from experiments in lab and pilot-plant reactors are presented.

View Article and Find Full Text PDF

A waterborne pressure-sensitive adhesive (PSA) that shows high adhesive performance and easy debondability on demand without leaving residues on the substrate (adhesive failure) has been developed. A key component of the PSA is a semicrystalline phase that is beneficial for the adhesive properties and that becomes fluid when heated above the melting temperature. Migration of this liquid-like polymer to the substrate-adhesive interface and hardening upon cooling results in a hard non-tacky interface that facilitates debonding.

View Article and Find Full Text PDF

Hybrid core/shell polymer particles with co-encapsulated quantum dots (QDs) (CdSe/ZnS) and CeO nanoparticles have been synthesized in a two stage semi-batch emulsion polymerization process. In the first stage, both inorganic nanoparticles are incorporated into cross-linked polystyrene (PS) particles by miniemulsion polymerization. This hybrid dispersion is then used as the seed to produce the core/shell particles by starved feeding of methyl methacrylate and divinylbenzene (MMA/DVB) monomers.

View Article and Find Full Text PDF

Despite significant efforts, the design of alkoxyamines for polymerization of methacrylic monomers in a well-controlled fashion with good retention of the active chain ends remains a challenge. Herein, the facile synthesis of several alkoxyamines, which are capable of achieving this long sought-after goal, is reported. Controlled homopolymerization of methyl methacrylate is achieved as determined by a linear increase in molecular weight with conversion and first-order rate plots for various alkoxyamine concentrations.

View Article and Find Full Text PDF

This study addresses the preparation and characterization of hybrid films prepared from Titanium dioxide (TiO2) Pickering stabilized acrylic polymeric dispersion as well as their bacterial inactivation efficiency under sunlight irradiation. Complete bacterial inactivation under low intensity simulated solar light irradiation (55 mW/cm(2)) was observed within 240 min for the films containing 10 weight based on monomers (wbm) % of TiO2, whereas 360 min were needed for the films containing 20 wbm% of TiO2. The hybrid films showed repetitive Escherichia coli (E.

View Article and Find Full Text PDF

A simple method to prepare multifunctional liquid marbles and dry water with magnetic, color, and fluorescent properties is presented. Multifunctional liquid marbles were prepared by encapsulation of water droplets using flocculated polymer latexes. First, the emulsion polymerization reaction of polystyrene and poly(benzyl methacrylate) was carried out using cheap and commercially available cationic surfactants.

View Article and Find Full Text PDF

By using a two-step polymerization process, it was possible to encapsulate clay platelets within polymer particles dispersed in water. First, seed polymer particles with chemically bonded clay were obtained by batch miniemulsion polymerization. Then, the clay was buried within the particles by the addition of neat monomer in a second step.

View Article and Find Full Text PDF

The use of sodium montmorillonite clay as a stabilizer in the surfactant-free emulsion polymerization of n-butyl acrylate/styrene (n-BA/S) was assessed. It was shown that the use of the clay alone did not yield the desired armored latex particles. A functional comonomer, that is, a phosphate ester of poly(ethylene glycol) monomethacrylate, was used to improve the interaction between the polymer and clay, thus allowing for the clay platelets to adhere to the surface of the polymer particles.

View Article and Find Full Text PDF

Waterborne polymer nanocomposites containing carbon nanotubes, clay platelets, laponite disks and other spherical/nonspherical nanofillers have been the focus of many recent investigations. The miniemulsion polymerization has proved to be a powerful technique to create new hybrid waterborne nanocomposites with enhanced properties. It is necessary to understand how the nanofiller shape/size and its compatibility with the phases affects the equilibrium morphology of the polymer nanoparticle to control the morphology and the properties of the resulting polymeric dispersions.

View Article and Find Full Text PDF

A thermostatized and agitated sample cell for synchrotron small-angle X-ray scattering (SAXS) measurements of liquid samples (homogeneous or heterogeneous) has been developed. The cell is composed of a compact main body with inlet and outlet windows for the beams of light. The volume of the cell is approximately 0.

View Article and Find Full Text PDF

Fourier transform (FT)-Raman combined with partial least squares regression (PLS-R) calibration models allows the accurate monitoring of solids content, copolymer composition, and free amounts of monomers in starved semi-batch emulsion copolymerizations. The calibration models remain valid as long as the spectrometer and the measuring conditions are unchanged. Unfortunately, maintenance and/or repairing of the spectrometer result in changes in the relative intensities of the peaks of the Raman spectrum, reducing the performance of the calibration models.

View Article and Find Full Text PDF

A high solids content n-butyl acrylate/methyl methacrylate emulsion copolymerization process carried out under starved semi-batch conditions was for the first time monitored on-line by means of Fourier transform (FT)-Raman spectroscopy. Partial least squares regression was employed to build calibration models that allowed relating the spectra with solids content (overall conversion), free amounts of both n-butyl acrylate (n-BA) and methyl methacrylate (MMA), and cumulative copolymer composition. In spite of the heterogeneous nature of the polymerization, the similarities of the spectra for MMA, n-BA, and for the copolymer, and the low monomer concentrations in the reactor, the FT-Raman spectroscopy has been shown to be a suitable noninvasive sensor to accurately monitor the process.

View Article and Find Full Text PDF