Carpal tunnel syndrome (CTS) is the most common cause of peripheral compressive neuropathy and consists of compression of the median nerve in the wrist. Although there are several etiologies, idiopathic is the most prevalent origin, and among the forms of treatment for CTS, conservative is the most indicated. However, despite the high prevalence in and impact of this syndrome on the healthcare system, there are still controversies regarding the best therapeutic approach for patients.
View Article and Find Full Text PDFOver time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI.
View Article and Find Full Text PDFThe basal ganglia are a subcortical collection of interacting clusters of cell bodies, and are involved in reward, emotional, and motor circuits. Within all the brain processing necessary to carry out voluntary movement, the basal nuclei are fundamental, as they modulate the activity of the motor regions of the cortex. Despite being much studied, the motor circuit of the basal ganglia is still difficult to understand for many people at all, especially undergraduate and graduate students.
View Article and Find Full Text PDFSenescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward.
View Article and Find Full Text PDFBackground: Neural cells undergo functional or sensory loss due to neurological disorders. In addition to environmental or genetic factors, oxidative stress is a major contributor to neurodegeneration. In this context, there has been a growing interest in investigating the effects of EOs (EOs) in recent years, especially in the treatment of neuropathologies.
View Article and Find Full Text PDFAging affects the overall physiology, including the image-forming and non-image forming visual systems. Among the components of the latter, the thalamic retinorecipient inter-geniculate leaflet (IGL) and ventral lateral geniculate (vLGN) nucleus conveys light information to subcortical regions, adjusting visuomotor, and circadian functions. It is noteworthy that several visual related cells, such as neuronal subpopulations in the IGL and vLGN are neurochemically characterized by the presence of calcium binding proteins.
View Article and Find Full Text PDFJ Chem Neuroanat
March 2021
The location and distribution of the calcium-binding protein calbindin-D28k (CB) has been considered to be of great value as a neuronal marker for identifying distinct brain regions and discrete neuronal populations. In the amygdaloid complex (AC), the balance of excitatory and inhibitory inputs is controlled by CB immunoreactive interneurons. Alterations of inhibitory mechanisms in the AC may play a role in the emotional symptomatology of neurological diseases like Alzheimer's and psychiatric disorders like posttraumatic stress disorder.
View Article and Find Full Text PDFBackground: Calcium-binding proteins are heterogeneous proteins that act binding this ion in specific domains, performing numerous functions.
Objective: In the present review, we aim to gather principal information about S100B protein in the Central Nervous System (CNS), highlighting its particularities, mapping, functionalities, and consequences on CNS dysfunction.
Methods: The research was carried out by searching Pubmed, Medline, Science Direct, Lilacs, the Cochrane Library, and Web of Science databases using the following descriptors: S100 protein; Central Nervous System; Nervous Lesions, as well as their corresponding terms in Portuguese and Spanish.
The entorhinal cortex (EC) is associated with impaired cognitive function such as in the case of Alzheimer's disease, Parkinson's disease and Huntington's disease. The present study provides a detailed analysis of the cytoarchitectural and myeloarchitectural organization of the EC in the common marmoset Callithrix jacchus. Data were collected using Nissl and fiber stained preparations, supplemented with acetylcholinesterase and parvalbumin immunohistochemistry.
View Article and Find Full Text PDFBackground: Neurological disorders constitute a growing worldwide concern due to the progressive aging of the population and the risky behavior they represent. Herbal medicines have scientific relevance in the treatment of these pathologies. One of these substances, Astragaloside IV (AS-IV), is the main active compound present in the root of Astragalus membranaceus (Fisch.
View Article and Find Full Text PDFSenescence is a physiological and progressive event that leads to the impairment of normal functions of the organism. The nervous system is one of the most affected systems during aging, presenting both structural and functional alterations associated with a decline in normal brain functions. In the present study we aimed to evaluate the impact of senescence on the mesolimbic pathway (nucleus accumbens - NAc and ventral tegmental area - VTA) of the rat, through immunohistochemistry for tyrosine hydroxylase (TH) enzyme, in young (3 months old), middle-aged (10 months old) and aged animals (18 months old).
View Article and Find Full Text PDFThe normal aging process is accompanied by functional declines in image-forming and non-image forming visual systems. Among the components of these systems, the thalamic lateral geniculate nucleus (LGN) offers a good model for aging studies since its three anatomical subdivisions, namely dorsal lateral geniculate nucleus (dLGN), intergeniculate leaflet (IGL) and ventral lateral geniculate nucleus (vLGN), receives light information from retina and projects to different brain areas involved in visual-related functions. Nevertheless, there is very little data available about quantitative morphological aspects in LGN across lifespan.
View Article and Find Full Text PDFThe circadian timing system (CTS) anticipates optimal physiological patterns in response to environmental fluctuations, such as light-dark cycle. Since age-related disruption of circadian synchronization is linked to several pathological conditions, we characterized alterations of neurochemical constituents and retinal projections to the major pacemaker of CTS, the suprachiasmatic nucleus (SCN), in adult and aged marmosets. We used intraocular injections of neural tracer Cholera toxin b (CTb) to report age-related reductions in CTb, neuropeptide Y and serotonin immunoreactivities.
View Article and Find Full Text PDFIt is widely known that the catecholamine group is formed by dopamine, noradrenaline and adrenaline. Its synthesis is regulated by the enzyme called tyrosine hydroxylase. 3-hydroxytyramine/dopamine (DA) is a precursor of noradrenaline and adrenaline synthesis and acts as a neurotransmitter in the central nervous system.
View Article and Find Full Text PDFThe 3-hydroxytyramine/dopamine is a monoamine of the catecholamine group and it is a precursor of the noradrenaline and adrenaline synthesis, in which the enzyme tyrosine hydroxylase acts as a rate-limiting enzyme. The dopaminergic nuclei retrorubral field (A8 group), substantia nigra pars compacta (A9 group) and ventral tegmental area (A10 group) are involved in three complex circuitries named mesostriatal, mesocortical and mesolimbic, which are directly related to various behavioral manifestations such as motor control, reward signaling in behavioral learning, motivation and pathological manifestations of Parkinson's disease and schizophrenia. The aim of this study was to describe the delimitation of A8, A9 and A10 groups and the morphology of their neurons in the brain of the rock cavy (Kerodon rupestris), a typical Brazilian Northeast rodent belonging to the suborder Hystricomorpha, family Caviidae.
View Article and Find Full Text PDFSerotonin, or 5-hydroxytryptamine (5-HT), is a substance found in many tissues of the body, including as a neurotransmitter in the nervous system, where it can exert different post-synaptic actions. Inside the neuro-axis, 5-HT neurons are almost entirely restricted to the raphe nuclei of the brainstem. As such, 5-HT-immunoreactivity has been considered a marker of the raphe nuclei, which are located in the brainstem, at or near the midline.
View Article and Find Full Text PDF