Publications by authors named "Jose R De La Torre"

We explored the genome of the strain, Esol, symbiotic with the plant-gall-inducing fly with the goal of determining if Esol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of and Esol and assembled and annotated the genome of Esol.

View Article and Find Full Text PDF

Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized.

View Article and Find Full Text PDF

Instructor Talk-noncontent language used by instructors in classrooms-is a recently defined and promising variable for better understanding classroom dynamics. Having previously characterized the Instructor Talk framework within the context of a single course, we present here our results surrounding the applicability of the Instructor Talk framework to noncontent language used by instructors in novel course contexts. We analyzed Instructor Talk in eight additional biology courses in their entirety and in 61 biology courses using an emergent sampling strategy.

View Article and Find Full Text PDF

Marine Group I (MGI) Thaumarchaeota are some of the most abundant microorganisms in the deep ocean and responsible for much of the ammonia oxidation occurring in this environment. In this work, we present 35 sequences assembled from metagenomic samples of the first uncultivated Caudovirales viruses associated with Thaumarchaeota, which we designated marthavirus. Most of the sequences were obtained from cellular metagenomes confirming that they represent an important tool to study environmental viral communities due to cells retrieved while undergoing viral lysis.

View Article and Find Full Text PDF

Background: The photic zone of aquatic habitats is subjected to strong physicochemical gradients. To analyze the fine-scale variations in the marine microbiome, we collected seven samples from a single offshore location in the Mediterranean at 15 m depth intervals during a period of strong stratification, as well as two more samples during the winter when the photic water column was mixed. We were able to recover 94 new metagenome-assembled genomes (MAGs) from these metagenomes and examine the distribution of key marine microbes within the photic zone using metagenomic recruitment.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the clade, group 1.1b and group 1.

View Article and Find Full Text PDF

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs.

View Article and Find Full Text PDF

Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia-oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades.

View Article and Find Full Text PDF

Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers.

View Article and Find Full Text PDF

Serum samples from 18 axis deer ( Axis axis ) and 19 fallow deer ( Dama dama ) were analyzed with an enzyme-linked immunosorbent assay for Neospora caninum antibodies. Two axis (11%) and two fallow deer (11%) were positive for N. caninum antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Archaea can adapt to environmental changes by modifying the composition of their membrane lipids, specifically glycerol dialkyl glycerol tetraethers (GDGTs).
  • Research in Tengchong hot springs (Yunnan, China) revealed that the abundance and proportions of polar (P-GDGTs) and core GDGTs (C-GDGTs) vary significantly with seasonal changes, pH levels, and temperature.
  • Analysis indicated a strong correlation between the types of GDGTs and the acidity of the springs, suggesting that Archaea in low pH environments may enhance membrane stability by increasing the number of cyclopentyl rings in their GDGTs, highlighting their adaptation mechanisms.
View Article and Find Full Text PDF

Source waters sampled from Perpetual Spouter hot spring (pH 7.03, 86.4°C), Yellowstone National Park, WY, have low concentrations of total ammonia, nitrite, and nitrate, suggesting nitrogen (N) limitation and/or tight coupling of N cycling processes.

View Article and Find Full Text PDF

The discovery of ammonia-oxidizing archaea (AOA), now generally recognized to exert primary control over ammonia oxidation in terrestrial, marine, and geothermal habitats, necessitates a reassessment of the nitrogen cycle. In particular, the unusually high affinity of marine and terrestrial AOA for ammonia indicates that this group may determine the oxidation state of nitrogen available to associated micro- and macrobiota, altering our current understanding of trophic interactions. Initial comparative genomics and physiological studies have revealed a novel, and as yet unresolved, primarily copper-based pathway for ammonia oxidation and respiration distinct from that of known ammonia-oxidizing bacteria and possibly relevant to the production of atmospherically active nitrogen oxides.

View Article and Find Full Text PDF

Cell division is mediated by different mechanisms in different evolutionary lineages. While bacteria and euryarchaea utilize an FtsZ-based mechanism, most crenarchaea divide using the Cdv system, related to the eukaryotic ESCRT-III machinery. Intriguingly, thaumarchaeal genomes encode both FtsZ and Cdv protein homologues, raising the question of their division mode.

View Article and Find Full Text PDF

Research on the nitrogen biogeochemical cycle in terrestrial geothermal ecosystems has recently been energized by the discovery of thermophilic ammonia-oxidizing archaea (AOA). This chapter describes methods that have been used for measuring nitrification and denitrification in hot spring environments, including isotope pool dilution and tracer approaches, and the acetylene block approach. The chapter also summarizes qualitative and quantitative methods for measurement of functional and phylogenetic biomarkers of thermophiles potentially involved in these processes.

View Article and Find Full Text PDF

Abundance of ammonia-oxidizing Archaea (AOA) was found to be always greater than that of ammonia-oxidizing Bacteria along an estuarine salinity gradient, and AOA abundance was highest at intermediate salinity. However, AOA abundance did not correlate with potential nitrification rates. This lack of correlation may be due to methodological limitations or alternative energy sources.

View Article and Find Full Text PDF

The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1.

View Article and Find Full Text PDF

The widespread occurrence and diversity of ammonia oxidizing Archaea suggests their contribution to the nitrogen cycle is of global significance. Their distribution appeared limited to low- and moderate-temperature environments until the recent finding of a diagnostic membrane lipid, crenarchaeol, in terrestrial hot springs. We report here the cultivation of a thermophilic nitrifier ('Candidatus Nitrosocaldus yellowstonii'), an autotrophic crenarchaeote growing up to 74 degrees C by aerobic ammonia oxidation.

View Article and Find Full Text PDF

Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented.

View Article and Find Full Text PDF

For years, microbiologists characterized the Archaea as obligate extremophiles that thrive in environments too harsh for other organisms. The limited physiological diversity among cultivated Archaea suggested that these organisms were metabolically constrained to a few environmental niches. For instance, all Crenarchaeota that are currently cultivated are sulphur-metabolizing thermophiles.

View Article and Find Full Text PDF

Proteorhodopsin (PR) is a retinal-binding bacterial integral membrane protein that functions as a light-driven proton pump. The gene encoding this photoprotein was originally discovered on a large genome fragment derived from an uncultured marine gamma-proteobacterium of the SAR86 group. Subsequently, many variants of the PR gene have been detected in marine plankton, via PCR-based gene surveys.

View Article and Find Full Text PDF

In the McMurdo Dry Valleys of Antarctica, microorganisms colonize the pore spaces of exposed rocks and are thereby protected from the desiccating environmental conditions on the surface. These cryptoendolithic communities have received attention in microscopy and culture-based studies but have not been examined by molecular approaches. We surveyed the microbial biodiversity of selected cryptoendolithic communities by analyzing clone libraries of rRNA genes amplified from environmental DNA.

View Article and Find Full Text PDF