Publications by authors named "Jose R B Gomes"

Comparisons between simulated and experimental adsorption isotherms in MOFs are fraught with challenges. On the experimental side, there is significant variation between isotherms measured on the same system, with a significant percentage (∼20%) of published data being considered outliers. On the simulation side, force fields are often chosen "off-the-shelf" with little or no validation.

View Article and Find Full Text PDF

Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA).

View Article and Find Full Text PDF

Molecular dynamics simulations employing the all-atom optimized potential for liquid simulations (OPLS-AA) force field were performed for determining self-diffusion coefficients (D11) of ethanol and tracer diffusion coefficients (D12) of solutes in ethanol at several temperature and pressure conditions. For simulations employing the original OPLS-AA diameter of ethanol's oxygen atom (σOH), calculated and experimental diffusivities of protic solutes differed by more than 25%. To correct this behavior, the σOH was reoptimized using the experimental D12 of quercetin and of gallic acid in liquid ethanol as benchmarks.

View Article and Find Full Text PDF

The solubilities of glycine, l-leucine, l-phenylalanine, and l-aspartic acid were measured in aqueous MgCl, Mg(NO), CaCl, and Ca(NO) solutions with concentrations ranging from 0 to 2 mol/kg at 298.2 K. The isothermal analytical method was used combined with the refractive index measurements for composition analysis guaranteeing good accuracy.

View Article and Find Full Text PDF

This work describes the main advances carried out in the field of corrosion protection using layered double hydroxides (LDH), both as additive/pigment-based systems in organic coatings and as conversion films/pre-treatments. In the context of the research topic "Celebrating 20 years of CICECO", the main works reported herein are based on SECOP's group (CICECO) main advances over the years. More specifically, this review describes structure and properties of LDH, delving into the corrosion field with description of pioneering works, use of LDH as additives to organic coatings, conversion layers, application in reinforced concrete and corrosion detection, and environmental impact of these materials.

View Article and Find Full Text PDF

A classical molecular dynamics (MD) model of fully unconstrained layered double hydroxide (LDH) particles in aqueous NaCl solution was developed to explore the initial stages of the anion exchange process, a key feature of LDHs for their application in different fields. In particular, this study focuses on the active corrosion protection mechanism, where LDHs are able to entrap aggressive species from the solution while releasing fewer corrosive species or even corrosion inhibitors. With this purpose in mind, it was explored the release kinetics of the delivery of nitrate and 2-mercaptobenzothiazole (MBT, a typical corrosion inhibitor) from layered double hydroxide particles triggered by the presence of aggressive chloride anions in solution.

View Article and Find Full Text PDF

In this work, a simple two-parameters correlation based on the Rice and Gray, Lennard-Jones, and Stockmayer theories was devised for the calculation of binary diffusion coefficients (D12) of any type of solutes at infinite dilution in polar and non-polar solvents. This equation can be relevant for systems with polar solvents, since most models in the literature fail when strong intermolecular forces predominate in solution. The new correlation embodies the Stockmayer potential without requiring the dipole moments of any component, which significantly enlarges its application.

View Article and Find Full Text PDF

A high-throughput analysis based on density functional simulations underscores the viable epitaxial growth of MXenes by alternating nitrogen and metal adlayers. This is supported by an exhaustive analysis of a number of thermodynamic and kinetic thresholds belonging to different critical key steps in the course of the epitaxial growth. The results on 18 pristine N- and C-based MXenes with MX stoichiometry reveal an easy initial N fixation and dissociation, where N adsorption is controlled by the MXene surface charge and metal d-band center and its dissociation controlled by the reaction energy change.

View Article and Find Full Text PDF

In this paper, we present a new molecular model that can accurately predict thermodynamic liquid state and phase-change properties for organosilicon molecules including several functional groups (alkylsilane, alkoxysilane, siloxane, and silanol). These molecules are of great importance in geological processes, biological systems, and material science, yet no force field currently exists that is widely applicable to organosilicates. The model is parametrized according to the recent Polarization-Consistent Approach (PolCA), which allows for polarization effects to be incorporated into a nonpolarizable model through correction terms and is therefore consistent with previous parametrizations of the PolCA force field.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how a specially designed trinuclear ruthenium compound interacts with different oxo-anions by examining its binding affinities using NMR and electrochemical data.
  • - It was found that the compound has high anion selectivity and binding affinities, showing significant variations based on its oxidation state, with specific guests binding strongly.
  • - Computational studies revealed that the compound can bind at two distinct sites; however, the preferred binding site changes depending on the size of the guest and the oxidation state of the compound, highlighting the complexity of non-covalent interactions in these host-guest systems.
View Article and Find Full Text PDF

This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO partial pressures on the CO-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to 0.

View Article and Find Full Text PDF

Porous robust materials are typically the primary selection of several industrial processes. Many of these compounds are, however, not robust enough to be used as multifunctional materials. This is typically the case of Metal-Organic Frameworks (MOFs) which rarely combine several different excellent functionalities into the same material.

View Article and Find Full Text PDF

Due to their vast range of promising biomedical and electronic applications, there is a growing interest in bioinorganic lamellar nanomaterials. MXenes are one such class of materials, which stand out by virtue of their demonstrated biocompatibility, pharmacological applicability, energy storage performance, and feasibility as single-molecule sensors. Here, we report on first-principles predictions, based on density functional theory, of the binding energies and ground-state configurations of six selected amino acids (AAs) adsorbed on O-terminated two-dimensional titanium carbide, TiCO.

View Article and Find Full Text PDF

Tuberculosis, caused by (), remains one of the top ten causes of death worldwide and the main cause of mortality from a single infectious agent. The upsurge of multi- and extensively-drug resistant tuberculosis cases calls for an urgent need to develop new and more effective antitubercular drugs. As the cinnamoyl scaffold is a privileged and important pharmacophore in medicinal chemistry, some studies were conducted to find novel cinnamic acid derivatives (CAD) potentially active against tuberculosis.

View Article and Find Full Text PDF

Heterogeneously catalyzed reactions take place at the catalyst surface where, depending on the conditions and process, the reacting molecules are either in the gas or liquid phase. In the latter case, computational heterogeneous catalysis studies usually neglect solvent effects. In this work, we systematically analyze how the electrostatic contribution to solvent effects influences the atomic structure of the reactants and products as well as the adsorption, activation, and reaction energy for the dissociation of water on several planar and stepped transition metal surfaces.

View Article and Find Full Text PDF

A series of zirconium dicarboxylate-based metal-organic frameworks (Zr MOFs) of the UiO-66 (tetrahedral and octahedral cages) or MIL-140 (triangular channels) structure type were investigated for the separation of ethane/ethylene mixtures. The adsorption, investigated both experimentally and computationally, revealed that the size and type of pores have a more pronounced effect on the selectivity than the aromaticity of the linker. The increase in pore size when changing from benzene to naphthalene (NDC) dicarboxylate ligand makes UiO-NDC less selective (1.

View Article and Find Full Text PDF

The temperature responsive solubility of ionic liquids with 'bulky' polar regions, such as tributyltetradecyl phosphonium chloride ([P44414]Cl), in acidic aqueous solutions is elucidated through a combined experimental and computational approach. The temperature effect in the acidic aqueous biphasic system HCl/[P44414]Cl/H2O was characterised in the range 273 K to 373 K and was found to significantly deviate from the corresponding aqueous biphasic system with NaCl. A new transferable coarse grained MARTINI model for [P44414]Cl was developed, validated and applied to provide a molecular understanding of the experimental results.

View Article and Find Full Text PDF

Chemisorbent materials, based on porous aminosilicas, are among the most promising adsorbents for direct air capture applications, one of the key technologies to mitigate carbon emissions. Herein, a critical survey of all reported chemisorbed CO species, which may form in aminosilica surfaces, is performed by revisiting and providing new experimental proofs of assignment of the distinct CO species reported thus far in the literature, highlighting controversial assignments regarding the existence of chemisorbed CO species still under debate. Models of carbamic acid, alkylammonium carbamate with different conformations and hydrogen bonding arrangements were ascertained using density functional theory (DFT) methods, mainly through the comparison of the experimental C and N NMR chemical shifts with those obtained computationally.

View Article and Find Full Text PDF

Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of H NMR chemical shifts (CSs), upon in silico HB cleavage.

View Article and Find Full Text PDF

Conventional molecular models fail to correctly describe interactions of adsorbates with coordinatively unsaturated sites (CUS) present in a large number of metal-organic frameworks (MOFs). Here, we confirm the failure of these models for a prototypical polar adsorbate, carbon monoxide, and show that simply adjusting their parameters leads to poor agreement with experimental isotherms when outside the fitting conditions. We propose a new approach that combines quantum mechanical density functional theory (DFT) with Monte Carlo simulations to rigorously account for specific interactions at the CUS.

View Article and Find Full Text PDF

Periodic mesoporous organosilicas (PMOs) were suggested as potential adsorbents for CO2/CH4 separation because of their large affinities towards CO2 and low interaction with CH4. Herewith, we present a comprehensive computational study on the binding properties of flue gas species with the pore walls of periodic mesoporous phenylene-silica (Ph-PMO) for understanding the possible impact of other gaseous species in the CO2/CH4 separation. The calculations considered three exchange-correlation functionals (PBE, PBE-D2 and M06-2X) based on the density functional theory and the walls of the periodic mesoporous phenylene-silica were modelled within the cluster model approach.

View Article and Find Full Text PDF

Ionic-liquid-based acidic aqueous biphasic systems (IL-based AcABS) represent a promising alternative to the solvent extraction process for the recovery of critical metals, in which the substitution of the inorganic salt by an acid allows for a 'one-pot' approach to the leaching and separation of metals. However, a more fundamental understanding of AcABS formation remains wanting. In this work, the formation mechanisms of AcABS are elucidated through a comparison with traditional aqueous biphasic systems (ABS).

View Article and Find Full Text PDF

The reactivity of metallic nanotubes toward the catalysis of water dissociation, a key step in the water gas shift reaction (WGSR), was analyzed through density functional theory (DFT) calculations. Water dissociation was studied on surfaces of nanotubes based on copper, gold and platinum, and also on platinum doped copper and gold nanotubes. Gold and copper nanotubes present activities that are similar to those of their corresponding extended surfaces but, in the case of the Pt(5,3) nanotube, a significant improvement in the activity is found when compared with the extended surfaces.

View Article and Find Full Text PDF

Triazoles are well-known organic corrosion inhibitors of copper. 1H-1,2,3-Triazole and 1,2,4-triazole, two very simple molecules with the only difference being the positions of the nitrogen atoms in the triazole ring, were studied in this work as corrosion inhibitors of copper in 50 mM NaCl solution using a set of electrochemical and analytical techniques. The results of electrochemical tests indicate that 1H-1,2,3-triazole exhibited superior inhibitor properties but could not suppress anodic copper dissolution at moderate anodic potentials (>+300 mV SCE), while 1,2,4-triazole, although it exhibited higher anodic currents, suppressed anodic copper dissolution at very anodic potentials.

View Article and Find Full Text PDF