In recent years, magnetic nanoparticles (MNPs) have exhibited theragnostic characteristics which confer a wide range of applications in the biomedical field. Consequently, through Alternating Current Biosusceptometry (ACB), magnetic nanoparticles can be used as tracers, allowing the study of healthy and cirrhotic livers and providing the ability to differentiate them through the reconstruction of quantitative images. The ACB system consists of a developing biomagnetic technique that has the ability to magnetize and measure the magnetic susceptibility of a material such as MNPs, thereby offering quantitative information about biological systems with magnetic tracers.
View Article and Find Full Text PDFBackground: Non-invasive magnetic imaging techniques are necessary to assist magnetic nanoparticles in biomedical applications, mainly detecting their distribution inside the body. In Alternating Current Biosusceptometry (ACB), the magnetic nanoparticle's magnetization response under an oscillating magnetic field, which is applied through an excitation coil, is detected with a balanced detection coil system.
Results: We built a Multi-Channel ACB system (MC-ACB) containing nineteen pick-up coils and obtained 2D quantitative images of magnetic nanoparticle distributions by solving an inverse problem.
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected.
View Article and Find Full Text PDFBackground: Gastrointestinal (GI) motility disorders in type 2 diabetes mellitus (T2DM) are common. However, the endpoints in well-controlled T2DM in elderly patients are barely understood.
Objective: To evaluate GI transit and gastric myoelectric activity in elderly patients with T2DM who were undergoing treatment with metformin and to compare them with non-diabetic healthy controls.
Once administered in an organism, the physiological parameters of magnetic nanoparticles (MNPs) must be addressed, as well as their possible interactions and retention and elimination profiles. Alternating current biosusceptometry (ACB) is a biomagnetic detection system used to detect and quantify MNPs. The aims of this study were to evaluate the biodistribution and clearance of MNPs profiles through long-time in vivo analysis and determine the elimination time carried out by the association between the ACB system and MnFeO nanoparticles.
View Article and Find Full Text PDFSeveral studies have demonstrated statistical and texture analysis abilities to differentiate cancerous from healthy tissue in magnetic resonance imaging. This study developed a method based on texture analysis and machine learning to differentiate prostate findings. Forty-eight male patients with PI-RADS classification and subsequent radical prostatectomy histopathological analysis were used as gold standard.
View Article and Find Full Text PDFPharmacomagnetography involves the simultaneous assessment of solid dosage forms (SDFs) in the human gastrointestinal (GI) tract and the drug plasmatic concentration, using a biomagnetic technique and pharmacokinetics analysis. This multi-instrumental approach helps the evaluation, as GI variables can interfere with the drug delivery processes. This study aimed to employ pharmacomagnetography to evaluate the influence of omeprazole on the drug release and absorption of metronidazole administered orally in magnetic-coated tablets.
View Article and Find Full Text PDFPLoS One
June 2021
In this work, we aimed to develop an automatic algorithm for the quantification of total volume and lung impairments in four different diseases. The quantification was completely automatic based upon high resolution computed tomography exams. The algorithm was capable of measuring volume and differentiating pulmonary involvement including inflammatory process and fibrosis, emphysema, and ground-glass opacities.
View Article and Find Full Text PDFEvaluate whether texture analysis associated with machine learning approaches could differentiate between malignant and benign lymph nodes. A total 18 patients with lung cancer were selected, with 39 lymph nodes, being 15 malignant and 24 benign. Retrospective computed tomography scans were utilized both with and without contrast medium.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
September 2021
Background: Triple immunosuppressive therapy is associated with several gastrointestinal disorders. The aim of this study was to investigate the effects induced by the triple immunosuppressive therapy on the gastrointestinal tract of rats.
Methods: Male Wistar rats were randomly assigned into three experimental groups: Control: filtered water; TAC + MPS + PRED: treated with Tacrolimus plus Mycophenolate Sodium plus Prednisone; and CSA + AZA + PRED: treated with Cyclosporine plus Azathioprine plus Prednisone.
Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model).
View Article and Find Full Text PDFAims: Inflammatory bowel disease is a chronic relapsing inflammation that affects the gastrointestinal tract, causing changes in colonic motility. The evolution of these changes is not completely understood and possibly related to symptoms that appear in different degrees of the intestinal inflammation. Therefore, our aim is evaluate during 14 days of assessment aspects of colonic contractility using 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of inflammation in rats and associate the inflammatory process with colonic motility.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
October 2019
We have showed that surface layer can determine cardiac effects of the magnetic nanoparticles (MNPs). Considering the high binding capacity of albumin and low side-effects, the aim of this study was to evaluate the influence of albumin coating on the cardiovascular effects of two manganese ferrite-based MNPs: citrate-coated and bare MNPs. Isolated rat hearts were perfused with citrate-coated magnetic nanoparticles (CiMNPs), citrate albumin-coated magnetic nanoparticles (CiAlbMNPs), bare magnetic nanoparticles (BaMNPs), and albumin-coated magnetic nanoparticles (AlbMNPs).
View Article and Find Full Text PDFIn this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP.
View Article and Find Full Text PDFObjectives: In order to enable less experienced physicians to reliably detect early signs of stroke, A novel approach was proposed to enhance the visual perception of ischemic stroke in non-enhanced CT.
Methods: A set of 39 retrospective CT scans were used, divided into 23 cases of acute ischemic stroke and 16 normal patients. Stroke cases were obtained within 4.
Background: We introduce and demonstrate that the AC biosusceptometry (ACB) technique enables real-time monitoring of magnetic nanoparticles (MNPs) in the bloodstream. We present an ACB system as a simple, portable, versatile, non-invasive, and accessible tool to study pharmacokinetic parameters of MNPs, such as circulation time, in real time. We synthesized and monitored manganese doped iron oxide nanoparticles in the bloodstream of Wistar rats using two different injection protocols.
View Article and Find Full Text PDFWe describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique.
View Article and Find Full Text PDFAim: To correlate gastric contractility, gastrointestinal transit, and hormone levels in non-pregnant (estrous cycle) and pregnant rats using noninvasive techniques.
Methods: Female rats (n = 23) were randomly divided into (1) non-pregnant, (contractility, n = 6; transit, n = 6); and (2) pregnant (contractility, n = 5; transit, n = 6). In each estrous cycle phase or at 0, 7, 14, and 20 d after the confirmation of pregnancy, gastrointestinal transit was recorded by AC biosusceptometry (ACB), and gastric contractility was recorded by ACB and electromyography.
The purpose of this work was to develop a quantitative method for evaluating the pulmonary inflammatory process (PIP) through the computational analysis of chest radiography exams in posteroanterior (PA) and lateral views. The quantification procedure was applied to patients with tuberculosis (TB) as the motivating application.A study of high-resolution computed tomography (HRCT) examinations of patients with TB was developed to establish a relation between the inflammatory process and the signal difference-to-noise ratio (SDNR) measured in the PA projection.
View Article and Find Full Text PDFAlternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn-Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams.
View Article and Find Full Text PDFThis study presents methodology for objectively quantifying the pulmonary region affected by emphysemic and fibrotic sequelae in treated patients with paracoccidioidomycosis. This methodology may also be applied to any other disease that results in these sequelae in the lungs.Pulmonary high-resolution computed tomography examinations of 30 treated paracoccidioidomycosis patients were used in the study.
View Article and Find Full Text PDFBackground: Immunosuppressive therapy after kidney transplant is necessary to prevent allograft rejection and it is the cause of several gastrointestinal (GI) disorders that have been scantily studied.
Objectives: This study was aimed at investigating the influence of triple immunosuppressive therapy on GI transit in renal transplant patients by employing a biomagnetic technique.
Methods: Twenty-one renal transplant patients underwent triple therapy, which included either tacrolimus (TAC) or cyclosporin A (CsA) associated with prednisone and azathioprine.
The relationship between time-courses of mechanical and electrical events in longstanding diabetes was investigated in rats. Magnetic markers and electrodes were surgically implanted in the gastric serosa of male rats. Simultaneous recordings were obtained by AC biosusceptometry, electromyography and electrogastrography one, three and six months after injections of saline (control) or alloxan (diabetic).
View Article and Find Full Text PDFThe association between anisotropic magnetoresistive (AMR) sensor and AC biosusceptometry (ACB) to evaluate gastrointestinal motility is presented. The AMR-ACB system was successfully characterized in a bench-top study, and in vivo results were compared with those obtained by means of simultaneous manometry. Both AMR-ACB and manometry techniques presented high temporal cross correlation between the two periodicals signals .
View Article and Find Full Text PDF