Publications by authors named "Jose P Pinheiro"

Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements.

View Article and Find Full Text PDF

An historical overview covering the field of electroanalytical metal cations speciation in freshwaters is presented here, detailing both the notable experimental and theoretical developments. Then, a critical review of the progress in the last five years is given, underlining in particular the improvements in electrochemical setups and methodologies dedicated to field surveys. Given these recent achievements, a road map to carry out on-site dynamic metal speciation measurements is then proposed, and the key future developments are discussed.

View Article and Find Full Text PDF

The present work demonstrates the use of Cd as a reactivity probe of the fulvic acids (FAs), humic acids (HAs) and dissolved organic matter (DOM) compost extracts. Significant differences were observed between the extracts, with the HA extract showing the highest reactivity. Comparing the different composts, the largest reactivity variation was again observed for HA then FA and finally DOM extracts.

View Article and Find Full Text PDF

Electrochemical stripping techniques are interesting candidates for carrying out onsite speciation of environmentally relevant trace metals due to the existing low-cost portable instrumentation available and the low detection limits that can be achieved. In this work, we describe the initial analytical technique method development by quantifying the total metal concentrations using Stripping Chronopotentiometry (SCP). Carbon paste screen-printed electrodes were modified with thin films of mercury and used to quantify sub-nanomolar concentrations of lead and cadmium and sub-micromolar concentrations of zinc in river water.

View Article and Find Full Text PDF

Silica oxides nano- and microparticles, as well as silica-based materials, are very abundant in nature and industrial processes. Trace metal cation binding with these bulk materials is generally not considered significant in speciation studies in environmental systems. Nonetheless, this might change for nanoparticulate systems as observed in a previous study of Pb(II) with a very small SiO particle (7.

View Article and Find Full Text PDF

Hypothesis: Charge descriptors of aquatic nanoparticles (NPs) are evaluated from proton titration curves measured at different salt concentrations and routinely analysed by the Non-Ideal Competitive Adsorption-Donnan (NICAD) model. This model, however, suffers from approximations regarding particle electrostatics, which may bias particle charge estimation. Implementation of Poisson-Boltzmann (PB) theory within consistent treatment of NPs protolytic data is expected to address NICAD shortcomings.

View Article and Find Full Text PDF

The geochemical fate of indium in natural waters is still poorly understood, while recent studies have pointed out a growing input of this trivalent element in the environment as a result of its utilisation in the manufacturing of high-technology products. Reliable and easy-handling analytical tools for indium speciation analysis are, then, required. In this work, we report the possibility of measuring the total and free indium concentrations in solution using two complementary electroanalytical techniques, SCP (Stripping chronopotentiometry) and AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) implemented with the TMF/RDE (Thin Mercury Film/Rotating Disk Electrode).

View Article and Find Full Text PDF

Genetically engineered microorganisms are alternatives to physicochemical methods for remediation of metal-contaminated aquifers due to their remarkable bioaccumulation capacities. The design of such biosystems would benefit from the elaboration of a sound quantitative connection between performance in terms of metal removal from aqueous solution and dynamics of the multiscale processes leading to metal biouptake. In this work, this elaboration is reported for Escherichia coli cells modified to overexpress intracellular metallothionein (MTc), a strong proteinaceous metal chelator.

View Article and Find Full Text PDF

The lability of a complex species between a metal ion M and a binding site S, MS, is conventionally defined with respect to an ongoing process at a reactive interface, for example, the conversion or accumulation of the free metal ion M by a sensor. In the case of soft charged multisite nanoparticulate complexes, the chemodynamic features that are operative within the micro environment of the particle body generally differ substantially from those for dissolved similar single-site complexes in the same medium. Here we develop a conceptual framework for the chemodynamics and the ensuing lability of soft (3D) nanoparticulate metal complexes.

View Article and Find Full Text PDF

Metal binding to natural soft colloids is difficult to address due to the inherent heterogeneity of their reactive polyelectrolytic volume and the modifications of their shell structure following changes in e.g. solution pH, salinity or temperature.

View Article and Find Full Text PDF

The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu(2+)) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode.

View Article and Find Full Text PDF

In this work we propose a trace metal speciation methodology to determine the total, free and ultrafiltered (<1 KDa) metal fractions using electrochemical methods (SCP and AGNES) and tangential ultrafiltration (UF) experiments that can easily be carried out on-site. We tested our methodology spiking Cadmium ions into two natural waters samples from Itapanhau and Sorocabinha rivers in Sao Paulo State, Brazil. The limits of detection (LOD) was 1.

View Article and Find Full Text PDF

Ex situ plated Bi film electrodes (Bi-FE) have been employed, for the first time, to measure the free concentration of Pb(II) in aqueous solutions using absence of gradients and Nernstian equilibrium stripping (AGNES) with stripping chronopotentiometry (SCP) quantification. The amount of deposited Pb°, below a certain threshold, follows a Nernstian relationship with the applied potential. This threshold can be interpreted as the frontier of transition from surface deposition to solid (bulk) formation of Pb°.

View Article and Find Full Text PDF

Environmental health hazards of Quantum Dots (QDs) are of emergent concern, but limited data is available about their toxicokinetics (TK) and tissue distribution in marine bivalves. This study investigated the QDs behavior in seawater, their TK and tissue distribution in Mytilus galloprovincialis, in comparison with soluble Cd. Mussels were exposed to CdTe QDs and soluble Cd for 21 days at 10 μgCd L(-1) followed by a 50 days depuration.

View Article and Find Full Text PDF

The nuclease activity of VO(acac)2 (1, acac = acetylacetone) and its derivatives VO(hd)2 (2, hd = 3,5-heptanedione), VO(Cl-acac)2 (3, Cl-acac = 3-chloro-2,4-pentanedione), VO(Et-acac)2 (4, Et-acac = 3-ethyl-2,4-pentanedione) and VO(Me-acac)2 (5, Me-acac = 3-methyl-2,4-pentanedione), is studied by agarose gel electrophoresis, UV-visible spectroscopy, cyclic and square wave voltammetry and (51)V NMR. The mechanism is shown to be oxidative and associated with the formation of reactive oxygen species (ROS). Hydrolytic cleavage of the phosphodiester bond is also promoted by 1, but at much slower rate which cannot compete with the oxidative mechanism.

View Article and Find Full Text PDF

Particles consisting of a glassy poly(methyl methacrylate) core (ca. 40 nm in radius) decorated with a poly(N-isopropylacrylamide) anionic corona are synthesized using either methacrylic acid (MA) or acrylic acid (AA) as reactive comonomers in the shell. The different reactivity ratios of MA and AA toward N-isopropylacrylamide originates p(MA-N) and p(N-AA) particles with carboxylate charges supposedly located, preferentially, in the close vicinity of the core and at the shell periphery, respectively.

View Article and Find Full Text PDF

The hydrogel/water partitioning of the various species in the cadmium(II)/soil humic acid (HA) system is studied for two types of gel, using in situ microelectrodic voltammetry. Under the conditions of this work, with HA particles of ca. 25 and 125 nm radius, the CdHA complex is shown to be close to nonlabile toward a 12.

View Article and Find Full Text PDF

Determining the environmental risk of metals requires an in-depth understanding of the environmental matrices composition, which currently also includes the presence of manufactured metallic nanoparticles (NPs) usually, stabilized by a polymer surface coating. As a consequence, is necessary to take into account effects of the NP core, the polymer surface coating and their mutual interaction as well as with other environmental components. The release of metal ions from metallic NPs is a well-known outcome, however, the effect of the presence of the NP polymer coating in the NPs solubilization mechanism is not well understood.

View Article and Find Full Text PDF

There is an increased use of Quantum Dot (QDs) in biological and biomedical applications, but little is known about their marine ecotoxicology. So, the aim of this study was to investigate the possible immunocytotoxic, cytogenotoxic and genotoxic effects of cadmium telluride QDs (CdTe QDs) on the marine mussel Mytilus galloprovincialis. Mussels were exposed to 10 μg L(-1) of CdTe QDs or to soluble Cd [Cd(NO3)2] for 14 days and Cd accumulation, immunocytotoxicity [hemocyte density, cell viability, lysosomal membrane stability (LMS), differential cell counts (DCC)], cytogenotoxicity (micronucleus test and nuclear abnormalities assay) and genotoxicity (comet assay) were analyzed.

View Article and Find Full Text PDF

Silver nanoparticles (Ag NPs) have emerged as one of the most commonly used NPs in a wide range of industrial and commercial applications. This has caused increasing concern about their fate in the environment as well as uptake and potential toxicity towards aquatic organisms. Accordingly, mussels Mytilus galloprovincialis were exposed to 10 μg L(-1) of Ag NPs and ionic silver (Ag+) for 15 days, and biomarkers of oxidative stress and metal accumulation were determined.

View Article and Find Full Text PDF

The water-soluble polyhydroxyfullerene (PHF) is a functionalized carbon nanomaterial with several industrial and commercial applications. There have been controversial reports on the toxicity and/or antioxidant properties of fullerenes and their derivatives. Conversely, metals have been recognized as toxic mainly due to their ability to induce oxidative stress in living organisms.

View Article and Find Full Text PDF

In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.

View Article and Find Full Text PDF

In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C.

View Article and Find Full Text PDF

The improvement of knowledge about the toxicity and even processability, and stability of quantum dots (QD) requires the understanding of the relationship between the QD binding head group, surface structure, and interligand interaction. The scanned stripping chronopotentiometry and absence of gradients and Nernstian equilibrium stripping techniques were used to determine the concentration of Cd dissolved from a polyacrylate-stabilized CdTe/CdS QD. The effects of various concentrations of small organic ligands such as citric acid, glycine, and histidine and the roles of pH (4.

View Article and Find Full Text PDF

Given the wide use of CuO nanoparticles in various industrial and commercial applications they will inevitably end up in the aquatic environment. However, little information exists on their biological effects in bivalve species. Accordingly, mussels Mytilus galloprovincialis were exposed to 10 μg Cu L(-1) as CuO nanoparticles and Cu(2+) for 15 days, and biomarkers of oxidative stress (superoxide dismutase, catalase and glutathione peroxidase), damage (lipid peroxidation) and metal exposure (metallothionein) were determined along with Cu accumulation in the digestive glands of mussels.

View Article and Find Full Text PDF