Publications by authors named "Jose P Molin"

Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results.

View Article and Find Full Text PDF

Proximal soil sensing technologies, such as visible and near infrared diffuse reflectance spectroscopy (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS), are dry-chemistry techniques that enable rapid and environmentally friendly soil fertility analyses. The application of XRF and LIBS sensors in an individual or combined manner for soil fertility prediction is quite recent, especially in tropical soils. The shared dataset presents spectral data of VNIR, XRF, and LIBS sensors, even as the characterization of key soil fertility attributes (clay, organic matter, cation exchange capacity, pH, base saturation, and exchangeable P, K, Ca, and Mg) of 102 soil samples.

View Article and Find Full Text PDF

Measuring the mass flow of sugarcane in real-time is essential for harvester automation and crop monitoring. Data integration from multiple sensors should be an alternative to receive more reliable, accurate, and valuable predictions than data delivered by a single sensor. In this sense, the objective was to evaluate if the fusion of different sensors installed in a sugarcane harvester improves the mass flow prediction accuracy.

View Article and Find Full Text PDF

Proximal sensing for assessing sugarcane quality information during harvest can be affected by various factors, including the type of sample preparation. The objective of this study was to determine the best sugarcane sample type and analyze the spectral response for the prediction of quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling and spectral data acquisition were performed during the analysis of samples by conventional methods in a sugar mill laboratory.

View Article and Find Full Text PDF

Visible and near infrared (vis-NIR) diffuse reflectance and X-ray fluorescence (XRF) sensors are promising proximal soil sensing (PSS) tools for predicting soil key fertility attributes. This work aimed at assessing the performance of the individual and combined use of vis-NIR and XRF sensors to predict clay, organic matter (OM), cation exchange capacity (CEC), pH, base saturation (V), and extractable (ex-) nutrients (ex-P, ex-K, ex-Ca, and ex-Mg) in Brazilian tropical soils. Individual models using the data of each sensor alone were calibrated using multiple linear regressions (MLR) for the XRF data, and partial least squares (PLS) regressions for the vis-NIR data.

View Article and Find Full Text PDF

The understanding of the interaction between soil physicochemical attributes and herbicide behavior is fundamental for optimizing the efficient use of PRE-emergence herbicides in a more sustainable approach. However, it is still a poorly studied area within precision agriculture. Thus, the objective of this research was to evaluate the correlation of soil physicochemical attributes with the sorption and desorption processes of hexazinone and tebuthiuron to support application maps considering the field level variability.

View Article and Find Full Text PDF

Portable X-ray fluorescence (pXRF) sensors allow one to collect digital data in a practical and environmentally friendly way, as a complementary method to traditional laboratory analyses. This work aimed to assess the performance of a pXRF sensor to predict exchangeable nutrients in soil samples by using two contrasting strategies of sample preparation: pressed pellets and loose powder (<2 mm). Pellets were prepared using soil and a cellulose binder at 10% w w followed by grinding for 20 min.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrasonic and LiDAR sensors are key technologies in digital horticulture, used for accurately measuring tree canopy structures to enhance phenotyping and precision horticulture.
  • A review highlighted the ongoing development in data acquisition and processing, focusing on creating high-resolution 3D models to analyze tree parameters like canopy volume and leaf area.
  • Future research should explore broader applications of these technologies in site-specific management, integrating canopy data with other information, while promoting commercial solutions for scanning entire orchards to support plant phenotyping research.
View Article and Find Full Text PDF