Probing quantum mechanical tunneling (QMT) in chemical reactions is crucial to understanding and developing new transformations. Primary H/D kinetic isotopic effects (KIEs) beyond the semiclassical maximum values of 7-10 (room temperature) are commonly used to assess substantial QMT contributions in one-step hydrogen transfer reactions, because of the much greater QMT probability of protium vs. deuterium.
View Article and Find Full Text PDFMonomers of benzimidazole trapped in an argon matrix at 15 K were characterized by vibrational spectroscopy and identified as 1-tautomers exclusively. The photochemistry of matrix-isolated 1-benzimidazole was induced by excitations with a frequency-tunable narrowband UV light and followed spectroscopically. Hitherto unobserved photoproducts were identified as 4- and 6-tautomers.
View Article and Find Full Text PDFWe present here a new example of chemical reactivity governed by quantum tunneling, which also highlights the limitations of the classical theories. The and conformers of a triplet 2-formylphenylnitrene, generated in a nitrogen matrix, were found to spontaneously rearrange to the corresponding 2,1-benzisoxazole and imino-ketene, respectively. The kinetics of both transformations were measured at 10 and 20 K and found to be temperature-independent, providing clear evidence of concomitant tunneling reactions (heavy-atom and H-atom).
View Article and Find Full Text PDFQuantum mechanical tunneling of heavy-atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling-driven and vibrationally-induced reactivity, which constitute exceptional results for probing into the nature of these phenomena.
View Article and Find Full Text PDF5-Chlorosalicylaldehyde (abbreviated as 5CSA) is an important chemical used in the synthesis of fragrances, dyes, and pharmaceuticals. In this investigation, 5CSA isolated in solid N, at 10 K, and in its neat amorphous and crystalline phases, at 50 and 190 K, respectively, were investigated by infrared spectroscopy and DFT(B3LYP)/6-311++G(d,p) calculations. The systematic theoretical analysis of the 5CSA conformational landscape showed that the compound exhibits four different conformers, which were structurally characterized in detail.
View Article and Find Full Text PDFH-tunneling is a ubiquitous phenomenon, relevant to fields from biochemistry to materials science, but harnessing it for mastering the manipulation of chemical structures still remains nearly illusory. Here, we demonstrate how to switch on H-tunneling by conformational control using external radiation. This is outlined with a triplet 2-hydroxyphenylnitrene generated in an N matrix at 10 K by UV-irradiation of an azide precursor.
View Article and Find Full Text PDFThe monomers of 1,3-benzoxazole isolated in a cryogenic argon matrix were characterized by infrared spectroscopy. The photochemistry of matrix-isolated 1,3-benzoxazole, induced by excitation with a frequency-tunable narrowband UV light, was investigated. Irradiation at 233 nm resulted in a nearly quantitative conversion of 1,3-benzoxazole into 2-isocyanophenol.
View Article and Find Full Text PDFThe conformational behavior of carboxylic acids has attracted considerable attention, as it can be used as a gateway for the study of more complex phenomena. Here, we present an experimental and computational study of pyrrole-2-carboxylic acid (PCA) conformational space and the vibrational characterization of the compound by infrared spectroscopy. The possibility of promoting conformational transformations using selective vibrational excitation of the 2ν(OH) and 2ν(NH) stretching overtones is explored.
View Article and Find Full Text PDFNot long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy-atom QMT reaction. Triplet syn-2-formyl-3-fluorophenylnitrene, generated in argon matrices by UV-irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4-fluoro-2,1-benzisoxazole.
View Article and Find Full Text PDF