An innovative use of thermal infrared enthalpimetry (TIE) is proposed for the determination of alcoholic content of red and white wines. Notwithstanding the presence of ethanol in beverages, absolute ethanol was added directly to wines, and the temperature rise caused by the heat of dilution was monitored using an infrared camera. Analytical signals were obtained in only 10 s for four samples simultaneously, and a calibration curve was constructed with hydroalcoholic reference solutions.
View Article and Find Full Text PDFA new method for analytical applications based on the Maxwell-Wagner effect is proposed. Considering the interaction of carbonaceous materials with an electromagnetic field in the microwave frequency range, a very fast heating is observed due to interfacial polarization that results in localized microplasma formation. Such effect was evaluated in this work using a monomode microwave system, and temperature was recorded using an infrared camera.
View Article and Find Full Text PDFIn the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL NHNO), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NHNO concentration and irradiation time on cellulose oxidation was evaluated.
View Article and Find Full Text PDFA procedure for sample digestion based on focused microwave-induced combustion (FMIC) is proposed. This system was developed using a commercial focused microwave oven with a lab-made quartz sample holder and a modified glass vessel. Oxygen flow was used to start and support the combustion.
View Article and Find Full Text PDFIn this work, three sample preparation methods were evaluated for further halogen determination in elastomers containing high concentrations of carbon black. Samples of nitrile-butadiene rubber, styrene-butadiene rubber, and ethylene-propylene-diene monomer elastomers were decomposed using oxygen flask combustion and microwave-induced combustion (MIC) for further Br and Cl determination by ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma mass spectrometry (ICP-MS). Extraction assisted by microwave radiation in closed vessels was also evaluated using water or alkaline solution.
View Article and Find Full Text PDFA procedure based on microwave-induced combustion coupled to flame furnace (FF) atomic absorption spectrometry (FF-AAS) was used for analysis of solid samples. Botanical samples were prepared as pellets and introduced into a quartz holder device. This device was fitted to a glass chamber that was used for the combustion step.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
August 2002
The degradation of acid orange 7 dye (AO7) was studied using a 1 L semi-batch tank stirred glass reactor for performing three different photochemical processes (photoperoxidation, Fenton, photo-Fenton). A commercial low pressure lamp was used for irradiation of samples. The advancement of degradation was monitored by measurement of color reduction, UV-spectra, HPLC-UV and COD.
View Article and Find Full Text PDFA novel digestion procedure based on sample combustion ignited by microwave radiation is proposed for organic samples. Certified samples of bovine liver, pig kidney, and skim milk were used as examples to demonstrate the performance of the proposed procedure. Cadmium and copper were determined in these samples by electrothermal atomic absorption spectrometry.
View Article and Find Full Text PDF