Publications by authors named "Jose Munoz-Dorado"

Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation.

View Article and Find Full Text PDF

Bacterial predators are widely distributed across a variety of natural environments. Understanding predatory interactions is of great importance since they play a defining role in shaping microbial communities in habitats such as soils. is a soil-dwelling bacterial predator that can prey on Gram-positive and Gram-negative bacteria and even on eukaryotic microorganisms.

View Article and Find Full Text PDF

Bacterial predation impacts microbial community structures, which can have both positive and negative effects on plant and animal health and on environmental sustainability. is an epibiotic soil predator with a broad range of prey, including , which establishes nitrogen-fixing symbiosis with legumes. During the - interaction, the predator must adapt its transcriptome to kill and lyse the target (predatosome), and the prey must orchestrate a transcriptional response (defensome) to protect itself against the biotic stress caused by the predatory attack.

View Article and Find Full Text PDF

is a multicellular bacterium with a complex lifecycle. It is a soil-dwelling predator that preys on a wide variety of microorganisms by using a group and collaborative epibiotic strategy. In the absence of nutrients this myxobacterium enters in a unique developmental program by using sophisticated and complex regulatory systems where more than 1,400 genes are transcriptional regulated to guide the community to aggregate into macroscopic fruiting bodies filled of environmentally resistant myxospores.

View Article and Find Full Text PDF

Extracytoplasmic function (ECF) sigma factors are subunits of the RNA polymerase specialized in activating the transcription of a subset of genes responding to a specific environmental condition. The signal-transduction pathways where they participate can be activated by diverse mechanisms. The most common mechanism involves the action of a membrane-bound anti-sigma factor, which sequesters the ECF sigma factor, and releases it after the stimulus is sensed.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered antimicrobials, which are super important for keeping us healthy, but too much use has made some germs super strong and resistant to antibiotics.
  • There's a big problem now because we need new ways to fight these tough germs, and one idea is to use bacteria that eat other bacteria!
  • Research on how these "bacteria predators" work could help us find new treatments and better understand how germs resist antibiotics.
View Article and Find Full Text PDF

is a soil myxobacterium that exhibits a complex lifecycle with two multicellular stages: cooperative predation and development. During predation, myxobacterial cells produce a wide variety of secondary metabolites and hydrolytic enzymes to kill and consume the prey. It is known that eukaryotic predators, such as ameba and macrophages, introduce copper and other metals into the phagosomes to kill their prey by oxidative stress.

View Article and Find Full Text PDF

The bacterium exhibits a complex multicellular life cycle. In the presence of nutrients, cells prey cooperatively. Upon starvation, they enter a developmental cycle wherein cells aggregate to produce macroscopic fruiting bodies filled with resistant myxospores.

View Article and Find Full Text PDF

In order to survive, bacteria must adapt to multiple fluctuations in their environment, including coping with changes in metal concentrations. Many metals are essential for viability, since they act as cofactors of indispensable enzymes. But on the other hand, they are potentially toxic because they generate reactive oxygen species or displace other metals from proteins, turning them inactive.

View Article and Find Full Text PDF

The complex copper response of the multicellular proteobacterium M. xanthus includes structural genes similar to those described in other bacteria, such as P1B-type ATPases, multicopper oxidases, and heavy metal efflux systems. However, the two time-dependent expression profiles of the different copper systems are unique.

View Article and Find Full Text PDF

Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems.

View Article and Find Full Text PDF

Extracytoplasmic function sigma factors represent the third pillar of signal-transduction mechanisms in bacteria. The variety of stimuli they recognize and mechanisms of action they use have allowed their classification into more than 50 groups. We have characterized CorE2 from Myxococcus xanthus, which belongs to group ECF44 and upregulates the expression of two genes when it is activated by cadmium and zinc.

View Article and Find Full Text PDF

Myxococcus xanthus CorSR is a two-component system responsible for maintaining the response of this bacterium to copper. In the presence of this metal it upregulates, among others, the genes encoding the multicopper oxidase CuoA and the P1B -ATPase CopA. Dissection of the periplasmic sensor domain of the histidine kinase CorS by the analysis of a series of in-frame deletion mutants generated in this portion of the protein has revealed that copper sensing requires a region of 28 residues in the N terminus and another region of nine residues in the C terminus.

View Article and Find Full Text PDF
Article Synopsis
  • The study of how certain bacteria eat other bacteria started about 75 years ago using a type called myxobacteria.
  • Over time, scientists have learned that these predatory bacteria are found in many places and play a big role in the environment by affecting how other bacteria live and die.
  • The research now looks into how these predatory bacteria influence the diversity of life and may even help us understand more about evolution and how to use these bacteria in real-world applications.
View Article and Find Full Text PDF

Myxococcus xanthus is a social bacterium that preys on prokaryotic and eukaryotic microorganisms. Co-culture of M. xanthus with reference laboratory strains and field isolates of the legume symbiont Sinorhizobium meliloti revealed two different predatory patterns that resemble frontal and wolf-pack attacks.

View Article and Find Full Text PDF

Myxococcus xanthus is a soil-dwelling member of the δ-Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M.

View Article and Find Full Text PDF

Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells.

View Article and Find Full Text PDF

One of the mechanisms widely used by bacteria to adapt to their environment is mediated by alternative σ factors. Here we discuss the mechanism of action of a novel metal-dependent ECF σ factor, whose ability to bind DNA depends on the redox state of copper.

View Article and Find Full Text PDF

Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites.

View Article and Find Full Text PDF

The dual toxicity/essentiality of copper forces cells to maintain a tightly regulated homeostasis for this metal in all living organisms, from bacteria to humans. Consequently, many genes have previously been reported to participate in copper detoxification in bacteria. Myxococcus xanthus, a prokaryote, encodes many proteins involved in copper homeostasis that are differentially regulated by this metal.

View Article and Find Full Text PDF

Interaction of the predatory myxobacterium Myxococcus xanthus with the non-motile, antibiotic producer Streptomyces coelicolor was examined using a variety of experimental approaches. Myxococcus xanthus cells prey on S. coelicolor, forming streams of ordered cells that lyse the S.

View Article and Find Full Text PDF

Myxococcus xanthus is a soil-dwelling bacterium that exhibits a complex life cycle comprising social behavior, morphogenesis, and differentiation. In order to successfully complete this life cycle, cells have to cope with changes in their environment, among which the presence of copper is remarkable. Copper is an essential transition metal for life, but an excess of copper provokes cellular damage by oxidative stress.

View Article and Find Full Text PDF

Myxococcus xanthus has to cope with changes in its environment during growth and development. Among these factors, the concentration of copper is crucial due to the essential toxic effect of this metal, which forces the cells to maintain a tight homeostasis. The M.

View Article and Find Full Text PDF

The multicellular behavior of the myxobacterium Myxococcus xanthus requires the participation of an elevated number of signal-transduction mechanisms to coordinate the cell movements and the sequential changes in gene expression patterns that lead to the morphogenetic and differentiation events. These signal-transduction mechanisms are mainly based on two-component systems and on the reversible phosphorylation of protein targets mediated by eukaryotic-like protein kinases and phosphatases. Among all these factors, protein phosphatases are the elements that remain less characterized.

View Article and Find Full Text PDF

A newly identified extracellular laccase produced by Streptomyces ipomoea CECT 3341 (SilA) was cloned and overexpressed, and its physicochemical characteristics assessed together with its capability to decolorize and detoxify an azotype dye. Molecular analysis of the deduced sequence revealed that SilA contains a TAT-type signal peptide at the N-terminus and only two cupredoxine domains; this is consistent with reports describing two other Streptomyces laccases but contrasts with most laccases, which contain three cupredoxine domains. The heterologous expression and purification of SilA revealed that the homodimer is the only active form of the enzyme.

View Article and Find Full Text PDF