Publications by authors named "Jose Moran-Meza"

Measuring resistances at the nanoscale has attracted recent attention for developing microelectronic components, memory devices, molecular electronics, and two-dimensional materials. Despite the decisive contribution of scanning probe microscopy in imaging resistance and current variations, measurements have remained restricted to qualitative comparisons. Reference resistance calibration samples are key to advancing the research-to-manufacturing process of nanoscale devices and materials through calibrated, reliable, and comparable measurements.

View Article and Find Full Text PDF

The importance of high dielectric constant materials in the development of high frequency nano-electronic devices is undeniable. Their polarization properties are directly dependent on the value of their relative permittivity. We report here on the nanoscale metrological quantification of the dielectric constants of two high-κ materials, lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT), in the GHz range using scanning microwave microscopy (SMM).

View Article and Find Full Text PDF

Reference samples are commonly used for the calibration and quantification of nanoscale electrical measurements of capacitances and dielectric constants in scanning microwave microscopy (SMM) and similar techniques. However, the traceability of these calibration samples is not established. In this work, we present a detailed investigation of most possible error sources that affect the uncertainty of capacitance measurements on the reference calibration samples.

View Article and Find Full Text PDF

Epitaxial graphene (EG) grown on an annealed 6H-SiC(0001) surface has been studied under ultra-high vacuum (UHV) conditions by using a combined dynamic-scanning tunneling microscope/frequency modulation-atomic force microscope (dynamic-STM/FM-AFM) platform based on a qPlus probe. STM and AFM images independently recorded present the same hexagonal lattice of bumps with a 1.9 nm lattice period, which agrees with density functional theory (DFT) calculations and experimental results previously reported, attributed to the (6 × 6) quasi-cell associated with the 6H-SiC(0001) reconstruction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7vnsiojg03du7apnrvnr1pfs51mdh1up): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once