Navigating robots with precision in complex environments remains a significant challenge. In this article, we present an innovative approach to enhance robot localization in dynamic and intricate spaces like homes and offices. We leverage Visual Question Answering (VQA) techniques to integrate semantic insights into traditional mapping methods, formulating a novel position hypothesis generation to assist localization methods, while also addressing challenges related to mapping accuracy and localization reliability.
View Article and Find Full Text PDFIn Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others.
View Article and Find Full Text PDF