Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.
View Article and Find Full Text PDFDown syndrome (DS) is the most common genetic disorder associated with intellectual disability. To study this syndrome, several mouse models have been developed. Among the most common is the Ts65Dn model, which mimics most of the alterations observed in DS.
View Article and Find Full Text PDFThis work provides evidence of the presence of immature neurons in the human brain, specifically in the layer II of the cerebral cortex. Using surgical samples from epileptic patients and post-mortem tissue, we have found cells with different levels of dendritic complexity (type I and type II cells) expressing DCX and PSA-NCAM and lacking expression of the mature neuronal marker NeuN. These immature cells belonged to the excitatory lineage, as demonstrated both by the expression of CUX1, CTIP2, and TBR1 transcription factors and by the lack of the inhibitory marker GAD67.
View Article and Find Full Text PDFThe piriform cortex is involved in olfactory information processing, that is altered in Down Syndrome. Moreover, piriform cortex has a crucial involvement in epilepsy generation and is one of the first regions affected in Alzheimer's Disease, both maladies being prevalent among Down Syndrome individuals. In this work, we studied the alterations in neuronal morphology, synaptology and structural plasticity in the piriform cortex of the Ts65Dn mouse model, which is the most used model for the study of this syndrome and mimics some of their alterations.
View Article and Find Full Text PDFChemokines are small, secreted molecules that mediate inflammatory reactions. Neurons and astrocytes constitutively express chemokines implicated in the process of neuroinflammation associated with neurodegenerative diseases. The monocyte chemoattractant protein-1 (MCP-1) has been widely related to this process.
View Article and Find Full Text PDFBackground: Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons.
View Article and Find Full Text PDFThe olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle.
View Article and Find Full Text PDFN-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli.
View Article and Find Full Text PDFDopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia.
View Article and Find Full Text PDFThe olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis).
View Article and Find Full Text PDFDown Syndrome, with an incidence of one in 800 live births, is the most common genetic alteration producing intellectual disability. We have used the Ts65Dn model, that mimics some of the alterations observed in Down Syndrome. This genetic alteration induces an imbalance between excitation and inhibition that has been suggested as responsible for the cognitive impairment present in this syndrome.
View Article and Find Full Text PDFZinc is an essential trace element that is critical for a large number of structural proteins, enzymatic processes and transcription factors. In the brain, zinc ions are involved in synaptic transmission. The homeostasis of zinc is crucial for cell survival and function, and cells have developed a wide variety of systems to control zinc concentration.
View Article and Find Full Text PDFThe connectivity of the neurons of the olfactory bulb is highly idiosyncratic and constitutes an exception to the general plan of how neurons, and especially cortical neurons, construct circuits. The majority of synaptic contacts in the circuits of the cortex are axo-dendritic. In these contacts, the axon is the presynaptic element, which transmits the signal, and the dendrite is the postsynaptic element, which receives the signal.
View Article and Find Full Text PDFExcitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input.
View Article and Find Full Text PDFThe polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) is expressed by immature neurons in the amygdala of adult mammals, including non-human primates. In a recent report we have also described the presence of PSA-NCAM-expressing cells in the amygdala of adult humans. Although many of these cells have been classified as mature interneurons, some of them lacked mature neuronal markers, suggesting the presence of immature neurons.
View Article and Find Full Text PDFAlterations in the structure and physiology of the prefrontal cortex (PFC) have been found in different psychiatric disorders and some of them involve inhibitory networks, especially in schizophrenia and major depression. Changes in the structure of these networks may be mediated by the polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, expressed in the PFC exclusively by interneurons. Different studies have found that PSA-NCAM expression in the hippocampus and the amygdala is altered in schizophrenia, major depression and animal models of these disorders, in parallel to changes in the expression of molecules related to inhibitory neurotransmission and synaptic plasticity.
View Article and Find Full Text PDFThe olfactory bulb (OB) of mammals is the brain region that receives the sensory information coming from the olfactory epithelium. The entrance of the olfactory information occurs in spherical structures of neuropil named olfactory glomeruli and is modulated by a population of interneurons known as periglomerular cells (PG). It has been demonstrated that there are two types of PG in the OB of some macrosmatic mammals, including rats and mice.
View Article and Find Full Text PDFBackground: Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents.
View Article and Find Full Text PDFDecreased expression of dopamine D2 receptors (D2R), dysfunction of inhibitory neurotransmission and impairments in the structure and connectivity of neurons in the medial prefrontal cortex (mPFC) are involved in the pathogenesis of schizophrenia and major depression, but the relationship between these changes remains unclear. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, may serve as a link. This molecule is expressed in cortical interneurons and dopamine, via D2R, modulates its expression in parallel to that of proteins related to synapses and inhibitory neurotransmission, suggesting that D2R-targeted antipsychotics/antidepressants may act by affecting the plasticity of mPFC inhibitory circuits.
View Article and Find Full Text PDFNeuroimaging has revealed structural abnormalities in the amygdala of different psychiatric disorders. The polysialylated neural cell adhesion molecule (PSA-NCAM), a molecule related to neuronal structural plasticity, which expression is altered in schizophrenia, major depression and in animal models of these disorders, may participate in these changes. However, PSA-NCAM has not been studied in the human amygdala.
View Article and Find Full Text PDFDown syndrome is the most common genetic disorder associated with mental retardation. Subjects and mice models for Down syndrome (such as Ts65Dn) show defects in the formation of neuronal networks in both the hippocampus and the cerebral cortex. The principal neurons display alterations in the morphology, density and distribution of dendritic spines in the cortex as well as in the hippocampus.
View Article and Find Full Text PDFCereb Cortex
May 2011
Principal neurons in the adult cerebral cortex undergo synaptic, dendritic, and spine remodeling in response to different stimuli, and several reports have demonstrated that the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) participates in these plastic processes. However, there is only limited information on the expression of this molecule on interneurons and on its role in the structural plasticity of these cells. We have found that PSA-NCAM is expressed in mature interneurons widely distributed in all the extension of the cerebral cortex and have excluded the expression of this molecule in most principal cells.
View Article and Find Full Text PDF