Publications by authors named "Jose Melero"

Repetitive synaptic stimulation can induce different forms of synaptic plasticity but may also limit the robustness of synaptic transmission by exhausting key resources. Little is known about how synaptic transmission is stabilized after high-frequency stimulation. In the present study, we observed that tetanic stimulation of the Drosophila neuromuscular junction (NMJ) decreases quantal content, release-ready vesicle pool size and synaptic vesicle density for minutes after stimulation.

View Article and Find Full Text PDF

Background: Oxidized low-density lipoproteins and scavenger receptors (SRs) play an important role in the formation and development of atherosclerotic plaques. However, little is known about their presence in epicardial adipose tissue (EAT). The objective of the study was to evaluate the mRNA expression of different SRs in EAT of patients with ischemic heart disease (IHD), stratifying by diabetes status and its association with clinical and biochemical variables.

View Article and Find Full Text PDF

Objectives: The decision about whether to use a biological or a mechanical prosthesis for aortic valve replacement remains controversial in patients between 50 and 65 years of age and has yet to be addressed in a Mediterranean population. This research aimed to analyse long-term survival and major morbidity rates (30-day mortality, stroke, any prosthetic reoperation and major bleeding) within this population.

Methods: Our multicentre observational retrospective study included all subjects aged 50-65 years who had a primary isolated aortic valve replacement due to severe aortic stenosis at 7 public hospitals from Andalusia (Spain) between 2000 and 2015.

View Article and Find Full Text PDF

A comprehensive analysis of sequence variation was carried out comparing the fusion (F) protein of human respiratory syncytial viruses (hRSV) from antigenic groups A and B with the prototype sequence of the A2 strain, also belonging to antigenic group A. The limited number of full bovine RSV F sequences available were included, as well as an extensive set of F sequences from the related human metapneumovirus (hMPV). The results were analysed in the context of the recently determined three dimensional F protein structures, with antigenic sites mapped to these.

View Article and Find Full Text PDF

The global burden of disease caused by respiratory syncytial virus (RSV) is increasingly recognised, not only in infants, but also in older adults (aged ≥65 years). Advances in knowledge of the structural biology of the RSV surface fusion glycoprotein have revolutionised RSV vaccine development by providing a new target for preventive interventions. The RSV vaccine landscape has rapidly expanded to include 19 vaccine candidates and monoclonal antibodies (mAbs) in clinical trials, reflecting the urgency of reducing this global health problem and hence the prioritisation of RSV vaccine development.

View Article and Find Full Text PDF

Aortitis is an infrequent cause of aortic root dilatation and aortic valve regurgitation. Valve-sparing procedures have been proposed, but there is not clear evidence of which is the treatment of choice. We report the case of a 38-year-old pregnant lady with a diagnosis of idiopathic aortitis associated with aortic root aneurysm and severe aortic valve regurgitation.

View Article and Find Full Text PDF

Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV), two members of the family, account for the majority of severe lower respiratory tract infections worldwide in very young children. They are also a frequent cause of morbidity and mortality in the elderly and immunocompromised adults. High levels of neutralizing antibodies, mostly directed against the viral fusion (F) glycoprotein, correlate with protection against either hRSV or hMPV However, no cross-neutralization is observed in polyclonal antibody responses raised after virus infection or immunization with purified F proteins.

View Article and Find Full Text PDF

The influence of age and maternal antibodies on the antibody responses to human respiratory syncytial virus (hRSV) glycoproteins in very young children has been a matter of controversy. Both, immaturity of the immune system at very early age and suppression of the host immune response by high level of maternal antibodies have been claimed to limit the host antibody response to virus infection and to jeopardize the use of hRSV vaccines under development in that age group. Hence, the antibody responses to the two major hRSV glycoproteins (F and G) were evaluated in children younger than 2 years, hospitalized with laboratory confirmed hRSV bronchiolitis.

View Article and Find Full Text PDF

Human metapneumovirus (hMPV) is a frequent cause of bronchiolitis in young children. Its F glycoprotein mediates virus-cell membrane fusion and is the primary target of neutralizing antibodies. The inability to produce recombinant hMPV F glycoprotein in the metastable pre-fusion conformation has hindered structural and immunological studies.

View Article and Find Full Text PDF

The cryptic plasmid is essential for dissemination from the genital tract to the gastrointestinal (GI) tract. Following intravaginal inoculation, a strain deficient in plasmid-encoded pGP3 or pGP4 but not pGP5, pGP7, or pGP8 failed to spread to the mouse gastrointestinal tract, although mice infected with these strains developed productive genital tract infections. pGP3- or pGP4-deficient strains also failed to colonize the gastrointestinal tract when delivered intragastrically.

View Article and Find Full Text PDF

Introduction: Cardiac adipose tissue is a source of progenitor cells with regenerative capacity. Studies in rodents demonstrated that the intramyocardial delivery of cells derived from this tissue improves cardiac function after myocardial infarction (MI). We developed a new reparative approach for damaged myocardium that integrates the regenerative properties of cardiac adipose tissue with tissue engineering.

View Article and Find Full Text PDF

Chlamydia has been detected in the gastrointestinal tracts of both animals and humans. However, the mechanism by which Chlamydia colonizes the gut remains unclear. Chlamydia muridarum is known to spread from the genital to the gastrointestinal tracts hematogenously.

View Article and Find Full Text PDF

Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in young children and the elderly. There are currently no licensed RSV vaccines, and passive prophylaxis with the monoclonal antibody palivizumab is restricted to high-risk infants in part due to its modest efficacy. Although it is widely agreed that an effective RSV vaccine will require the induction of a potent neutralizing antibody response against the RSV fusion (F) glycoprotein, little is known about the specificities and functional activities of RSV F-specific antibodies induced by natural infection.

View Article and Find Full Text PDF

Extraordinary progress in the structure and immunobiology of the human respiratory syncytial virus glycoproteins has been accomplished during the last few years. Determination of the fusion (F) glycoprotein structure folded in either the prefusion or the postfusion conformation was an inspiring breakthrough not only to understand the structural changes associated with the membrane fusion process but additionally to appreciate the antigenic intricacies of the F protein. Furthermore, these developments have opened new avenues for structure-based designs of promising hRSV vaccine candidates.

View Article and Find Full Text PDF

Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.

View Article and Find Full Text PDF

ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies.

View Article and Find Full Text PDF

Human respiratory syncytial virus (hRSV) remains one of the most prevalent human pathogens for which a vaccine is still missing. After several decades of hesitant efforts, particularly after the harmful effects of a formalin-inactivated hRSV vaccine trial in the 1960s, hRSV vaccine development has received new impetus from structure-based studies of its main protective antigen: the fusion (F) glycoprotein. This article reviews studies done with hRSV F, either in pieces (e.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on human respiratory syncytial virus (hRSV) vaccine development through structural analysis of its fusion (F) glycoprotein, revealing three forms: monomeric, trimeric prefusion, and trimeric postfusion.
  • Experiments with BALB/c mice show that while postfusion F can provide some protection with lower amounts, prefusion F is more effective at inducing neutralizing antibodies and offers better protection with minimal pathology.
  • The research highlights that prefusion F should be prioritized in hRSV vaccine development due to its superior immunogenicity and protective efficacy compared to other F protein forms.
View Article and Find Full Text PDF

Unlabelled: Human respiratory syncytial virus (RSV), for which neither a vaccine nor an effective therapeutic treatment is currently available, is the leading cause of severe lower respiratory tract infections in children. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is highly increased during viral infections and has been reported to have an antiviral or a proviral activity, depending on the virus. Previous studies from our laboratory demonstrated strong ISG15 upregulation during RSV infection in vitro.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly individuals. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanized monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease.

View Article and Find Full Text PDF

Paramyxovirus entry into cells requires fusion of the viral and cell membranes mediated by one of the major virus glycoproteins, the fusion (F) glycoprotein which transits from a metastable pre-fusion conformation to a highly stable post-fusion structure during the membrane fusion process. F protein refolding involves large conformational changes of the protein trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) from each protomer into a six-helix bundle (6HB) motif.

View Article and Find Full Text PDF