Publications by authors named "Jose Maria Vallejo-Gil"

Connexin 43 (CX43) is one of the major components of gap junctions, the structures responsible for the intercellular communication and transmission of the electrical impulse in the left ventricle. There is limited information on the histological changes of CX43 with age and their effect on electrophysiology, especially in humans. Here, we analyzed left ventricular biopsies from living donors starting at midlife to characterize age-related CX43 remodeling.

View Article and Find Full Text PDF

Age-related fibrosis in the left ventricle (LV) has been mainly studied in animals by assessing collagen content. Using second-harmonic generation microscopy and image processing, we evaluated amount, aggregation and spatial distribution of LV collagen in young to old pigs, and middle-age and elder living donors. All collagen features increased when comparing adult and old pigs with young ones, but not when comparing adult with old pigs or middle-age with elder individuals.

View Article and Find Full Text PDF

Aging is the main risk factor for cardiovascular diseases. In humans, cardiac aging remains poorly characterized. Most studies are based on chronological age (CA) and disregard biological age (BA), the actual physiological age (result of the aging rate on the organ structure and function), thus yielding potentially imperfect outcomes.

View Article and Find Full Text PDF

Cardiac tissue slices preserve the heterogeneous structure and multicellularity of the myocardium and allow its functional characterization. However, access to human ventricular samples is scarce. We aim to demonstrate that slices from small transmural core biopsies collected from living donors during routine cardiac surgery preserve structural and functional properties of larger myocardial specimens, allowing accurate electrophysiological characterization.

View Article and Find Full Text PDF

Cardiomyocytes' geometry and connexin 43 (CX43) amount and distribution are structural features that play a pivotal role in electrical conduction. Their quantitative assessment is of high interest in the study of arrhythmias, but it is usually hampered by the lack of automatic tools. In this work, we propose a software algorithm (Myocyte Automatic Retrieval and Tissue Analyzer, MARTA) to automatically detect myocytes from fluorescent microscopy images of cardiac tissue, measure their morphological features and evaluate the expression of CX43 and its degree of lateralization.

View Article and Find Full Text PDF