Publications by authors named "Jose Maria Martinez-Otzeta"

Perception of the environment is an essential skill for robotic applications that interact with their surroundings [...

View Article and Find Full Text PDF

Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters.

View Article and Find Full Text PDF

Currently there are around 466 million hard of hearing people and this amount is expected to grow in the coming years. Despite the efforts that have been made, there is a communication barrier between deaf and hard of hearing signers and non-signers in environments without an interpreter. Different approaches have been developed lately to try to deal with this issue.

View Article and Find Full Text PDF

Action recognition in robotics is a research field that has gained momentum in recent years. In this work, a video activity recognition method is presented, which has the ultimate goal of endowing a robot with action recognition capabilities for a more natural social interaction. The application of Common Spatial Patterns (CSP), a signal processing approach widely used in electroencephalography (EEG), is presented in a novel manner to be used in activity recognition in videos taken by a humanoid robot.

View Article and Find Full Text PDF

Background: Microarray technology provides the expression level of many genes. Nowadays, an important issue is to select a small number of informative differentially expressed genes that provide biological knowledge and may be key elements for a disease. With the increasing volume of data generated by modern biomedical studies, software is required for effective identification of differentially expressed genes.

View Article and Find Full Text PDF

Video activity recognition, although being an emerging task, has been the subject of important research efforts due to the importance of its everyday applications. Surveillance by video cameras could benefit greatly by advances in this field. In the area of robotics, the tasks of autonomous navigation or social interaction could also take advantage of the knowledge extracted from live video recording.

View Article and Find Full Text PDF

Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.

View Article and Find Full Text PDF

Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform.

View Article and Find Full Text PDF