Publications by authors named "Jose Maria Garrido Balsells"

Underwater optical wireless communication (UOWC) systems provide the potential to establish secure high-data-rate communication links in underwater environments. The uniqueness of oceanic impairments, such as absorption, scattering, oceanic turbulence, and air bubbles demands accurate statistical channel models based on empirical measurements for the development of UOWC systems adapted to different types of water and link conditions. Recently, generalized Gamma and a mixture of two generalized Gamma probability density functions (PDF) were proposed to describe the statistical behavior of small and large air bubbles, respectively, when considering several levels of particle-induced scattering.

View Article and Find Full Text PDF

Recent research has shown that an accurate underwater channel characterization is necessary for underwater optical wireless communication (UOWC) in order to improve its current limitations related to the achievable data rate and the link distance, as required in undersea optical networks. This paper presents a new statistical model to characterize the scattering effect in terms of a fading never considered before. In this way, the probability density function of the scattering-induced fading channel is derived by means of a Gamma distribution by using only one degree of freedom in clear ocean and coastal waters.

View Article and Find Full Text PDF
Article Synopsis
  • UOWC links are affected by scattering from impurities and turbidity in water, leading to inter-symbol interference (ISI) that limits channel capacity and information rates.
  • This paper analyzes channel capacity for UOWC systems, incorporating ISI and ocean salinity effects, using a linear discrete-time filtering model.
  • Novel bounds for channel capacity with non-uniform on-off keying modulation are established, demonstrating that a tailored input distribution can enhance capacity, particularly in conditions of low optical signal-to-noise ratio.
View Article and Find Full Text PDF

In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes.

View Article and Find Full Text PDF

Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified.

View Article and Find Full Text PDF

In this paper, a novel and deeper physical interpretation on the recently published Málaga or ℳ statistical distribution is provided. This distribution, which is having a wide acceptance by the scientific community, models the optical irradiance scintillation induced by the atmospheric turbulence. Here, the analytical expressions previously published are modified in order to express them by a mixture of the known Generalized-K and discrete Binomial and Negative Binomial distributions.

View Article and Find Full Text PDF

In this paper, novel analytical closed-form expressions are derived for the probability density function of the sum of identically distributed correlated gamma-gamma random variables that models an optical atmospheric channel communication with receiver spatial diversity. The mathematical expressions here proposed provide a general procedure to obtain information about the scintillation effects induced by turbulence over a diversity reception scheme implementing equal-gain combining method. Both, validity and accuracy of the obtained statistical distribution are corroborated by comparing the analytical results to numerical results obtained by Monte-Carlo simulations.

View Article and Find Full Text PDF

In this Letter, closed-form expressions of ergodic capacity, outage probability, and outage rate are derived for an atmospheric optical communication link using intensity modulation and direct detection with unbounded optical wavefront propagating through a homogeneous and isotropic turbulent medium. The optical scintillation of the received signal is modeled with the recently proposed Málaga or M turbulence distribution. By taking advantage of this unifying statistical model, the expressions here presented are valid for all possible irradiance fluctuation conditions, leading to direct relationships between turbulence parameters and link capacity performance.

View Article and Find Full Text PDF

Recently, a new and generalized statistical model, called M or Málaga distribution, was proposed to model the irradiance fluctuations of an unbounded optical wavefront (plane and spherical waves) propagating through a turbulent medium under all irradiance fluctuation conditions in homogeneous, isotropic turbulence. Málaga distribution was demonstrated to have the advantage of unifying most of the proposed statistical models derived until now in the bibliography in a closed-form expression providing, in addition, an excellent agreement with published plane wave and spherical wave simulation data over a wide range of turbulence conditions (weak to strong). Now, such a model is completed by including the adverse effect of pointing error losses due to misalignment.

View Article and Find Full Text PDF
Article Synopsis
  • This paper analyzes the performance of a variable weight multiple pulse-position modulation (MPPM) coding technique in atmospheric optical communication affected by gamma-gamma optical scintillation.
  • It proposes a closed-form expression for the average bit error rate (BER) based on hyperexponential fitting of the conditional BER without turbulence.
  • The findings are supported by Monte Carlo simulations, validating the conditional and average BER expressions provided.
View Article and Find Full Text PDF
Article Synopsis
  • The study presents general analytical formulas for the average bit error rate in optical communication systems that use intensity modulation and direct detection with on-off keying.
  • These formulas account for various conditions of light intensity fluctuations, providing a comprehensive approach to understanding signal performance.
  • The research consolidates multiple existing statistical models into a single equation, enhancing the understanding of link performance across different scenarios.
View Article and Find Full Text PDF

In free space optical (FSO) communication, atmospheric turbulence causes fluctuation in both intensity and phase of the received light signal what may seriously impair the link performance. Additionally, turbulent inhomogeneities may produce optical pulse spreading. In this paper, a simple rate adaptive transmission technique based on the use of variable silence periods and on-off keying (OOK) formats with memory is presented.

View Article and Find Full Text PDF

In atmospheric optical communications, propagating pulses may be influenced by pulse spreading owing to turbulence, above all in scenarios characterized by sand and/or dust atmosphere. The long-term temporal broadening of a space-time Gaussian pulse propagating along a horizontal path through weak optical turbulence is modeled by the behavior of a Gaussian filter, where its cutoff frequency is related to the physical parameters of the link. Thus, it could be incorporated in a direct way to a numerical simulation model.

View Article and Find Full Text PDF