Hereditary Transthyretin Amyloidosis (vATTR-V30M) is a rare and highly incapacitating sensorimotor neuropathy caused by an inherited mutation (Val30Met), which typically affects gait, among other symptoms. In this context, we investigated the possibility of using machine learning (ML) techniques to build a model(s) that can be used to support the detection of the Val30Met mutation (possibility of developing the disease), as well as symptom onset detection for the disease, given the gait characteristics of a person. These characteristics correspond to 24 gait parameters computed from 3-D body data, provided by a Kinect v2 camera, acquired from a person while walking towards the camera.
View Article and Find Full Text PDFHereditary amyloidosis associated with transthyretin V30M (ATTRv V30M) is a rare and inherited multisystemic disease, with a variable presentation and a challenging diagnosis, follow-up and treatment. This condition entails a definitive and progressive motor impairment that compromises walking ability from near onset. The detection of the latter is key for the disease's diagnosis.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a rare and disabling neurological disorder caused by a mutation of the transthyretin gene. One of the disease's characteristics that mostly affects patients' quality of life is its influence on locomotion, with a variable evolution timing. Quantitative motion analysis is useful for assessing motor function, including gait, in diseases affecting movement.
View Article and Find Full Text PDFMotion analysis systems based on a single markerless RGB-D camera are more suitable for clinical practice than multi-camera marker-based reference systems. Nevertheless, the validity of RGB-D cameras for motor function assessment in some diseases affecting gait, such as Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP), is yet to be investigated. In this study, the agreement between the Kinect v2 and a reference system for obtaining spatiotemporal and kinematic gait parameters was evaluated in the context of TTR-FAP.
View Article and Find Full Text PDFRGB-D cameras provide 3-D body joint data in a low-cost, portable and non-intrusive way, when compared with reference motion capture systems used in laboratory settings. In this contribution, we evaluate the validity of both Microsoft Kinect versions (v1 and v2) for motion analysis against a Qualisys system in a simultaneous protocol. Two different walking directions in relation to the Kinect (towards - WT, and away - WA) were explored.
View Article and Find Full Text PDFBackground: Previous studies have successfully used augmented reality (AR) as an aid to exposure-based treatments for anxiety disorders. However, to the best of our knowledge, none of these studies have measured the physiological correlates of the fear response, relying solely on self-reports and behavioral avoidance tests.
Methods: As the physiological defensive reactivity pattern impacts on the treatment effectiveness, we tested the feasibility of an AR system integrated in a mobile and wearable device for assessing the psychophysiological mechanisms (heart rate) involved in fear responses in real-life contexts.
Human gait analysis provides valuable information regarding the way of walking of a given subject. Low-cost RGB-D cameras, such as the Microsoft Kinect, are able to estimate the 3-D position of several body joints without requiring the use of markers. This 3-D information can be used to perform objective gait analysis in an affordable, portable, and non-intrusive way.
View Article and Find Full Text PDFEpilepsy diagnosis is typically performed through 2Dvideo-EEG monitoring, relying on the viewer's subjective interpretation of the patient's movements of interest. Several attempts at quantifying seizure movements have been performed in the past using 2D marker-based approaches, which have several drawbacks for the clinical routine (e.g.
View Article and Find Full Text PDFTransthyretin Familial Amyloid Polyneuropathy (TTR-FAP) is a rare neurological disease caused by a genetic mutation with a variable presentation and consequent challenging diagnosis, complex follow-up and treatment. At this moment, this condition has no cure and treatment options are under development. One of the disease's implications is a definite and progressive motor impairment that from the early stages compromises walking ability and daily life activities.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Many neurological diseases, such as Parkinson's disease and epilepsy, can significantly impair the motor function of the patients, often leading to a dramatic loss of their quality of life. Human motion analysis is regarded as fundamental towards an early diagnosis and enhanced follow-up in this type of diseases. In this contribution, we present NeuroKinect, a novel system designed for motion analysis in neurological diseases.
View Article and Find Full Text PDFIntroduction: To report a single-institutional experience with the use of Superficial X-Ray Therapy (SXRT) for head and neck non-melanoma skin cancer (N-MSC) and to compare outcomes by prescribed fractionation schedules.
Materials And Methods: The medical records of 597 patients with 1021 lesions (720 BCC, 242 SCC, 59 SCC in situ) treated with kilovoltage radiation from 1979-2013 were retrospectively reviewed. The majority of patients were treated according to 1 of 3 institutional protocols based on the discretion of the radiation oncologist: 1) 22 x 2.
Epilepsy is a common neurological disorder which affects 0.5-1% of the world population. Its diagnosis relies both on Electroencephalogram (EEG) findings and characteristic seizure-induced body movements--called seizure semiology.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
In this paper, we present an Android-based system Application - AWARE - for the assessment of the person's physiology and behavior outside of the laboratory. To accomplish this purpose, AWARE delivers context dependent audio-visual stimuli, embedded into the subject's real-world perception, via marker/vision-based augmented reality (AR) technology. In addition, it employs external measuring resources connected via Bluetooth, as well as the smartphone's integrated resources.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Human motion analysis can provide valuable information for supporting the clinical assessment of movement disorders, such as Parkinson's disease (PD). In this contribution, we study the suitability of a Kinect v2 based system for supporting PD assessment in a clinical environment, in comparison to the original Kinect (v1). In this study, 3-D body joint data were acquired from both normal subjects, and PD patients treated with deep brain stimulation (DBS).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2015
Movement-related diseases, such as Parkinson's disease (PD), progressively affect the motor function, many times leading to severe motor impairment and dramatic loss of the patients' quality of life. Human motion analysis techniques can be very useful to support clinical assessment of this type of diseases. In this contribution, we present a RGB-D camera (Microsoft Kinect) system and its evaluation for PD assessment.
View Article and Find Full Text PDFA critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) is an imaging technique that can be used to characterize brain physiological activity, usually presented as 3D volumes in function of time. In the context of our previous work in nonlinear association studies in electroencephalogram (EEG) time series, we were able to identify clinical relevant features useful in clinical diagnosis. The use of a similar approach in fMRI, now adapted for 3D time series, is both appealing and new.
View Article and Find Full Text PDFRecent investigations suggest that there are differences between the characteristics of EEG and MEG epileptiform spikes. The authors performed an objective characterization of the morphology of epileptiform spikes recorded simultaneously in both EEG and MEG to determine whether they present the same morphologic characteristics. Based on a stepwise approach, the authors performed a computer analysis of EEG and MEG of a set of coincident epileptiform transients selected by a senior clinical neurophysiologist in recordings of three patients with drug-resistant epilepsy.
View Article and Find Full Text PDF