The walls of different types of caves under diverse geological settings (limestone, gypsum and volcanic) are colonized by biofilms of different colors: white, yellow, pink, grey, green to dark brown, but only a few colored biofilms such as the white, yellow and grey ones have been extensively studied. However, an assessment among the microbial communities originating these biofilms in different lithologies is lacking. Here we compare the yellow biofilms from two caves, Covadura and C3, in the Gypsum Karst of Sorbas in Spain, with those from two Spanish limestone caves (Pindal and Santian), and four volcanic caves in Spain and Italy (Viento, Honda del Bejenado, Grotta del Santo, Grotta di Monte Corruccio).
View Article and Find Full Text PDFThe Gypsum Karst of Sorbas, Almeria, southeast Spain, includes a few caves whose entrances are open and allow the entry and roosting of numerous bats. Caves are characterized by their diversity of gypsum speleothems, such as stalactites, coralloids, gypsum crusts, etc. Colored biofilms can be observed on the walls of most caves, among which the Covadura and C3 caves were studied.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCarbonate cave deposits (speleothems) have been used widely for paleoclimate reconstructions; however, few studies have examined the utility of other speleothem-forming minerals for this purpose. Here we demonstrate for the first time that stable isotopes (δO, δO and δD) of structurally-bound gypsum (CaSO·2HO) hydration water (GHW) can be used to infer paleoclimate. Specifically, we used a 63 cm-long gypsum stalactite from Sima Blanca Cave to reconstruct the climate history of SE Spain from ~ 800 BCE to ~ 800 CE.
View Article and Find Full Text PDF