Background: The non-homogenous flow of the cerebrospinal fluid within the ventricular catheter is one of the causative factors in shunt obstructions during the treatment of hydrocephalus. Previously, we studied the flow in ventricular catheters under the steady and pulsatile boundary conditions by means of computational fluid dynamics (CFD) in three-dimensional paradigms. Subsequently, several catheter designs with homogeneous flow patterns were developed out of which one prototype was chosen after a validation study.
View Article and Find Full Text PDFIntroduction: The most common treatment for hydrocephalus remains the ventriculoperitoneal shunt. Yet, the most frequent complication is ventricular catheter obstruction, which may account for 50-80 % of newly inserted shunts. Although many factors contribute to this, the main one is related to flow characteristics of the catheter within the hydrocephalic brain.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
April 2013
Co(2+)-containing cordierite glasses, of nominal compositions (Mg(1-x)Co(x))2Al4Si5O18 (with x = 0, 0.2, 0.4, 0.
View Article and Find Full Text PDFThe work described in this paper can be interpreted as an application of the order patterns of symbolic dynamics when dealing with unimodal maps. Specifically, it is shown how Gray codes can be used to estimate the probability distribution functions (PDFs) of the order patterns of unimodal maps whose dynamics is controlled by an external parameter. Furthermore, these PDFs depend on the value of the external parameter, which eventually provides a handle to estimate the parameter value from symbolic sequences (in form of Gray codes), even when the critical point depends on the parameter.
View Article and Find Full Text PDFNaturwissenschaften
July 2009
Molecular topology is an application of graph theory and statistics in fields like chemistry, biology, and pharmacology, in which the molecular structure matters. Its scope is the topological characterization of molecules by means of numerical invariants, called topological indices, which are the main ingredients of the molecular topological models. These are statistical models that are instrumental in the discovery of new applications of naturally occurring molecules, as well as in the design of synthetic molecules with specific chemical, biological, or pharmacological properties.
View Article and Find Full Text PDF