Publications by authors named "Jose Manuel Salgado"

The functional properties of edible insects can be explored by a joint use of novel technologies. This work applied varied pre-treatments (ultra-sound-assisted extraction, UAE; microwave-assisted extraction, MAE; temperature-assisted extraction, TAE; CO2-assisted extraction) and solvents (water, ethanol, water:ethanol) in Tenebrio molitor beetles to enhance the extraction of phenolic compounds with antioxidant activity. An enzymatic hydrolysis (EH) was performed in wet and treated biomasses to determine the protein hydrolysis.

View Article and Find Full Text PDF

The brewery industry is under economic and environmental pressure to minimize residual management costs, particularly brewery spent grain (BSG), which accounts for 80-85% (w/w) of the total by-products generated. BSG is a lignocellulosic material primarily composed of carbohydrates, proteins and lipids. Developing a biorefinery model for conversion of BSG into value-added products is a plausible idea.

View Article and Find Full Text PDF

Oilseed cakes (OC) are natural sources of lignocellulosic biomass, produced every year in large amounts. In addition to their main applications as animal feed, plant or soil fertilizer, and compost, they present enormous potential for being used in biotechnological processes for the obtainment and extraction of valuable bioactive compounds. This work evaluated the effect of solid-state fermentation on the bioactive properties of extracts obtained from the bioprocessing of OC and evaluated the effect of solvents on the recovery of compounds with higher bioactive potential.

View Article and Find Full Text PDF
Article Synopsis
  • Oilseed cakes (OC) are valuable feedstock for the biobased industry, and biotechnological methods can enhance their nutritional value while producing useful products.
  • A study used a fungal consortium, specifically Rhyzopus oryzae and Aspergillus ibericus, to improve the nutritional quality of sunflower and rapeseed cakes through solid-state fermentation (SSF).
  • The fermentation process led to high enzyme production (e.g., cellulase, protease, xylanase) and increased antioxidant properties, suggesting potential applications as food additives to combat oxidative stress.
View Article and Find Full Text PDF

Fortifying fish feeds with bioactive compounds, such as enzymes and antioxidants, has been an adopted strategy to improve feed nutritional quality and sustainability. However, feed additives can lose activity/effectiveness during pelleting and storage processes. This work aimed to monitor functional activity stability in feeds supplemented with a bioactive extract, including cellulases, xylanases, and antioxidants.

View Article and Find Full Text PDF

Seaweeds are valuable feedstocks with the potential to be used as ingredients in aquafeeds. However, their use are still limited, given their recalcitrant polysaccharide structure. To break this structure, a biotechnological approach such as solid-state fermentation (SSF) by filamentous fungi can be used, which simultaneously increases the nutritional value of the biomass.

View Article and Find Full Text PDF

Nowadays, agro-industrial by-products are of increasing interest as a source of antioxidant compounds. Thus, alternative green techniques to extract antioxidant compounds have been pursued. The use of enzymes to release bioactive compounds through antioxidant activity reduces the environmental impact caused by traditional extraction systems using organic solvents.

View Article and Find Full Text PDF

Novel environmentally friendly pretreatments have been developed in recent years to improve biomass fractionation. Solid-state fermentation (SSF) and treatment with ionic liquids show low environmental impact and can be used in biorefinery of biomass. In this work, these processes were assessed with brewery spent grain (BSG).

View Article and Find Full Text PDF

Brewer's spent grain (BSG) is the main brewery industry by-product, with potential applications in the feed and food industries due to its carbohydrate composition. In addition, the lignocellulosic nature of BSG makes it an adequate substrate for carbohydrases production. In this work, solid-state fermentation (SSF) of BSG was performed with a non-mycotoxin producer fungus with a high capacity to hydrolyze the lignocellulosic matrix of the agro-industrial by-products.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) are essential in healthy diets and their production is extremely important. Natural sources of PUFAs includes animal and aquatic products such as marine fish oil, however there are several limitations such as the decrease of fish stocks throughout the world. Thus, microbial oils are a preferable source of PUFAs.

View Article and Find Full Text PDF

The macroalgae aquaculture industry has grown up in the last years, and new applications for macroalgae should be considered. In this work, sequential biological treatments as solid-state fermentation (SSF) by Aspergillus ibericus and enzymatic hydrolysis (EH) were applied to washed and unwashed Ulva rigida. SSF of unwashed macroalgae showed higher xylanase (359.

View Article and Find Full Text PDF

Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed.

View Article and Find Full Text PDF

Background: Herbal liqueurs are alcoholic beverages produced by the maceration or distillation of aromatic and medicinal plants in alcohol, and are also highly valued for their medicinal properties. The process conditions, as well as the number and quantity of the plants employed, will have a great influence on the quality of the liqueur obtained. The aim of this research was to optimize these important variables.

View Article and Find Full Text PDF

Olive mills generate a large amount of waste that can be revaluated. This work aim to improve the production lignocellulolytic enzymes by solid-state fermentation using ultrasounds pretreated olive mill wastes. The composition of olive mill wastes (crude and exhausted olive pomace) was compared and several physicochemical characteristics were significantly different.

View Article and Find Full Text PDF

Background: Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature.

View Article and Find Full Text PDF

Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.

View Article and Find Full Text PDF

Xylitol is a pentahydroxy sugar alcohol coming from xylose with many applications in the food and pharmaceutical industries as a low caloric sweetener suitable for diabetics and as an active ingredient in several biomedical applications. The microbial bioproduction of xylitol from natural xylose coming from lignocellulosic materials appears a sustainable and a promising alternative to chemical synthesis, which works at stronger reaction conditions and generates undesirable co-products which must be removed. There are several reviews that study the metabolic pathways in wild and transformed xylitol producing yeasts and the culture conditions that enhance xylitol accumulation, which are mainly related to the need of microaerobiose for the best producing wild yeasts.

View Article and Find Full Text PDF

Phenolic compounds (benzoic and cinnamic acid derivatives) were determined by high-performance liquid chromatography with multiple wavelength detector (HPLC- -MWD) in grape marc distillates aged in , and wooden barrels. In addition to colour indices and evaluable polyphenols, all samples were described by sensorial analysis. There were significant differences in the mean concentrations of the majority of phenolic compounds among the samples.

View Article and Find Full Text PDF

Introduction: Plants from the Lamiaceae family have been known traditionally for their beneficial health-promoting properties, attributed to their anti-inflammatory, anaesthetic and anti-microbial effects.

Objective: The purposes of this study was to characterise the essential oils from four Lamiaceae plants by applying different extraction techniques.

Methods: Accelerated solvent (ASE), Soxhlet and supercritical fluid (SFE) extraction methods were compared for their efficiency in obtaining the essential oils from plants.

View Article and Find Full Text PDF

In situ extractive fermentation was used to produce 4-vinyl derivatives from hydroxycinnamic acids extracted from corn cobs by recombinant Escherichia coli cells expressing Lactobacillus plantarum phenolic acid descarboxylase (PAD) gene. This microorganism mainly produced 4-vinylphenol (4VP) from p-coumaric acid (p-CA). In the first study , we observed that the concentrations of 4VP are higher than 1g/L which had a negative impact on decarboxylation of p-CA to 4VP by recombinant E.

View Article and Find Full Text PDF

Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp.

View Article and Find Full Text PDF

Coculture fermentations show advantages for producing food additives from agroindustrial wastes, considering that different specified microbial strains are combined to improve the consumption of mixed sugars obtained by hydrolysis. This technology dovetails with both the growing interest of consumers towards the use of natural food additives and with stricter legislations and concern in developed countries towards the management of wastes. The use of this technology allows valorization of both cellulosic and hemicellulosic fractions of trimming vine shoots for the production of lactic acid (LA), phenyllactic acid (PLA), and biosurfactants (BS).

View Article and Find Full Text PDF

The volatile compounds produced by Debaryomyces hansenii NRRL Y-7426 during the fermentation of detoxified concentrated distilled grape marc hemicellulosic hydrolysates was analysed by GC-MS. Thirty-five compounds corresponding to ten groups of volatile compounds: terpenes, higher alcohols, C₆ alcohols, aldehydes, volatile acids, acetates, ethyl esters, volatile phenols, sulphur compounds and hydrocarbons were identified. The supplementation with commercial nutrients increased the concentration of 2-phenylethanol, a commercial flavour and fragrance compound, with a rose-like odour, employed in cosmetics and food industries; and other positive compounds to the aroma such as terpenes and ethyl esters.

View Article and Find Full Text PDF

The enzyme PAD from Lactobacillus plantarum CECT 748T decarboxylates some cinnamic acids namely p-coumaric acid (p-CA), caffeic acid (CA), and ferulic acid (FA) into their corresponding 4-vinyl derivatives (4-VD): 4-vinyl phenol (4-VP), 4-vinyl catechol (4-VC), and 4-vinyl guaiacol (4-VG), respectively, which are valuable food additives mainly employed as flavouring agents. The gene encoding this enzyme was cloned and overexpressed in Escherichia coli. Recombinant E.

View Article and Find Full Text PDF

Biosynthesis of xylitol using the yeast Debaryomyces hansenii NRRL Y-7426 was carried out using distilled grape marc (DGM) hemicellulosic hydrolysates directly concentrated by vacuum evaporation or after detoxification with activated charcoal. The effect of nutrient supplementation with vinasses, corn steep liquor (CSL) or commercial nutrients was explored. Using crude concentrated hemicellulosic hydrolysates, the maximum xylitol concentration, 11.

View Article and Find Full Text PDF