Publications by authors named "Jose Manuel Perez de la Lastra"

Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides.

View Article and Find Full Text PDF

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action.

View Article and Find Full Text PDF

Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy.

View Article and Find Full Text PDF

The phrase "Let food be thy medicine…" means that food can be a form of medicine and medicine can be a form of food; in other words, that the diet we eat can have a significant impact on our health and well-being. Today, this phrase is gaining prominence as more and more scientific evidence suggests that one's diet can help prevent and treat disease. A diet rich in fruits, vegetables, whole grains, and lean protein can help reduce the risk of heart disease, cancer, diabetes, and other health problems and, on the other hand, a diet rich in processed foods, added sugars, and saturated fats can increase the risk of the same diseases.

View Article and Find Full Text PDF

Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (HS) in the human body. HS is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO).

View Article and Find Full Text PDF

This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine.

View Article and Find Full Text PDF

The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases.

View Article and Find Full Text PDF

Peptides with antifungal activity have gained significant attention due to their potential therapeutic applications. In this study, we explore the use of pretrained protein models as feature extractors to develop predictive models for antifungal peptide activity. Various machine learning classifiers were trained and evaluated.

View Article and Find Full Text PDF

Phytochemicals from plant extracts are becoming increasingly popular in the world of food science and technology because they have positive effects on human health. In particular, several bioactive foods and dietary supplements are being investigated as potential treatments for chronic COVID. Hydroxytyrosol (HXT) is a natural antioxidant, found in olive oil, with antioxidant anti-inflammatory properties that has been consumed by humans for centuries without reported adverse effects.

View Article and Find Full Text PDF

Fish, like all other animals, are exposed to constant contact with microbes, both on their skin and on the surfaces of their respiratory and digestive systems. Fish have a system of non-specific immune responses that provides them with initial protection against infection and allows them to survive under normal conditions despite the presence of these potential invaders. However, fish are less protected against invading diseases than other marine vertebrates because their epidermal surface, composed primarily of living cells, lacks the keratinized skin that serves as an efficient natural barrier in other marine vertebrates.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells MDSCs are a heterogeneous population of cells that expand beyond their physiological regulation during pathologies such as cancer, inflammation, bacterial, and viral infections. Their key feature is their remarkable ability to suppress T cell and natural killer NK cell responses. Certain risk factors for severe COVID-19 disease, such as obesity and diabetes, are associated with oxidative stress.

View Article and Find Full Text PDF

Classically, superoxide anion O and reactive oxygen species ROS play a dual role. At the physiological balance level, they are a by-product of O reduction, necessary for cell signalling, and at the pathological level they are considered harmful, as they can induce disease and apoptosis, necrosis, ferroptosis, pyroptosis and autophagic cell death. This revision focuses on understanding the main characteristics of the superoxide O, its generation pathways, the biomolecules it oxidizes and how it may contribute to their modification and toxicity.

View Article and Find Full Text PDF

Background: Ethnic communities have relied on animals and their derived products for ages, and their use is often intricately related to many cultural features. In remote regions across the globe, indigenous peoples have been using invertebrates and herptiles for a variety of purposes (medicine, food, culture, and spiritual importance); however, related scientific research is sparse, particularly in the western Himalayas. In this respect, we collected useful information on invertebrates and herpetofauna from Jammu and Kashmir, India, across different ethnic groups, i.

View Article and Find Full Text PDF

This review examines the role of chlorine dioxide (ClO) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.

View Article and Find Full Text PDF

In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of leaves, and rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.

View Article and Find Full Text PDF

This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions.

View Article and Find Full Text PDF

Nanotechnology is the study and control of materials at length scales between 1 and 100 nanometers (nm), where incredible phenomena enable new applications. It affects all aspects of human life and is the most active research topic in modern materials science. Among the various metallic nanoparticles used in biomedical applications, silver nanoparticles (AgNPs) are among the most important and interesting nanomaterials.

View Article and Find Full Text PDF

This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a "respiratory burst" after activation. The anion superoxide O and hydrogen peroxide HO are detrimental to the microbial population.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely distributed in the environment and possess deleterious health effects. The main objective of the study was to obtain bacterial isolates from PCB-contaminated soil for enhanced biodegradation of PCB-77. Selective enrichment resulted in the isolation of 33 strains of PCB-contaminated soil nearby Bhilai steel plant, Chhattisgarh, India.

View Article and Find Full Text PDF

Due to its eco-friendliness, cost-effectiveness, ability to be handled safely, and a wide variety of biological activities, the green plant-mediated synthesis of nanoparticles has become increasingly popular. The present work deals with the green synthesis and characterization of silver nanoparticles (AgNPs) using (fruit) and the evaluation of its antibacterial, antioxidant, and phytotoxic activities. For the synthesis of AgNPs, fruit extract was treated with a 4 mM AgNO solution at room temperature, and a color change was observed.

View Article and Find Full Text PDF

This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.

View Article and Find Full Text PDF

Wheat is the most important staple food worldwide, but wheat cultivation faces challenges from high food demand. Fertilizers are already in use to cope with the demand; however, more unconventional techniques may be required to enhance the efficiency of wheat cultivation. Nanotechnology offers one potential technique for improving plant growth and production by providing stimulating agents to the crop.

View Article and Find Full Text PDF