The polar discontinuity at any ferroelectric surface creates a depolarizing field that must be screened for the polarization to be stable. In capacitors, screening is done by the electrodes, while in bare ferroelectric surfaces it is typically accomplished by atmospheric adsorbates. Although chemisorbed species can have even better screening efficiency than conventional electrodes, they are subject to unpredictable environmental fluctuations and, moreover, dominant charged species favor one polarity over the opposite.
View Article and Find Full Text PDFThree-dimensional magnetophotonic crystals (3D-MPCs) are being postulated as appropriate platforms to tailor the magneto-optical spectral response of magnetic materials and to incorporate this functionality in a new generation of optical devices. By infiltrating self-assembled inverse opal structures with monodisperse nickel nanoparticles we have fabricated 3D-MPCs that show a sizable enhancement of the magneto-optical signal at frequencies around the stop-band edges of the photonic crystals. We have established a proper methodology to disentangle the intrinsic magneto-optical spectra from the nonmagnetic optical activity of the 3D-MPCs.
View Article and Find Full Text PDFWe report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles.
View Article and Find Full Text PDF