Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering.
View Article and Find Full Text PDFHow does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms.
View Article and Find Full Text PDFHypoxia exerts profound effects on cell physiology, but its effect on colonic uptake of the microbiota-generated forms of vitamin B1 (i.e., thiamin pyrophosphate [TPP] and free thiamine) has not been described.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2021
The water-soluble vitamin B1 is essential for normal human health and physiology. In its main biologically active form, i.e.
View Article and Find Full Text PDFBackground: Abnormalities of the ventral lamina of the sixth cervical vertebra (AVL-C6) are thought to exert abnormal stress on the articular process joints (APJs) of the cervicothoracic junction. The aim of the study was to investigate the association between AVL-C6 and radiographic findings in the caudal cervical area and between clinical signs of neck pain and ataxia and radiographic findings.
Methods: Medical records of horses subjected to cervical radiography were reviewed.
Flowering time is a key process in plant development. Photoperiodic signals play a crucial role in the floral transition in Arabidopsis thaliana, and the protein CONSTANS (CO) has a central regulatory function that is tightly regulated at the transcriptional and post-translational levels. The stability of CO protein depends on a light-driven proteasome process that optimizes its accumulation in the evening to promote the production of the florigen FLOWERING LOCUS T (FT) and induce seasonal flowering.
View Article and Find Full Text PDFAim: The aim of the study was to determine the rate of inadequate empirical antimicrobial treatment in older nursing home residents with bacteremic urinary tract infection and its influence on prognosis.
Methods: We carried out a multicentric prospective observational study in five Spanish hospitals. Patients aged >65 years with pyelonephritis or urinary sepsis with bacteremia were included.
Aggressive sibling competition for parental food resources is relatively infrequent in animals but highly prevalent and extreme among certain bird families, particularly accipitrid raptors (Accipitriformes). Intense broodmate aggression within this group is associated with a suite of traits including a large adult size, small broods, low provisioning rates, and slow development. In this study, we apply phylogenetic comparative analyses to assess the relative importance of several behavioral, morphological, life history, and ecological variables as predictors of the intensity of broodmate aggression in 65 species of accipitrid raptors.
View Article and Find Full Text PDFBackground: Bacteremia is common in severe urinary infections, but its influence on the outcomes is not well established. The aim of this study was to assess the association of bacteremia with outcomes in elderly patients admitted to hospital with pyelonephritis or urinary sepsis.
Methods: This prospective muticenter observational study was conducted at 5 Spanish hospitals.
Daily rhythms play a key role in transcriptome regulation in plants and microalgae orchestrating responses that, among other processes, anticipate light transitions that are essential for their metabolism and development. The recent accumulation of genome-wide transcriptomic data generated under alternating light:dark periods from plants and microalgae has made possible integrative and comparative analysis that could contribute to shed light on the evolution of daily rhythms in the green lineage. In this work, RNA-seq and microarray data generated over 24 h periods in different light regimes from the eudicot and the microalgae and have been integrated and analyzed using gene co-expression networks.
View Article and Find Full Text PDFDELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs), whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation.
View Article and Find Full Text PDFMeasuring day length confers a strong fitness improvement to photosynthetic organisms as it allows them to anticipate light phases and take the best decisions preceding diurnal transitions. In close association with signals from the circadian clock and the photoreceptors, photoperiodic sensing constitutes also a precise way to determine the passing of the seasons and to take annual decisions such as the best time to flower or the beginning of dormancy. Photoperiodic sensing in photosynthetic organisms is ancient and two major stages in its evolution could be identified, the cyanobacterial time sensing and the evolutionary tool kit that arose in green algae and developed into the photoperiodic system of modern plants.
View Article and Find Full Text PDFSucrose-phosphate phosphatase (SPP) catalyses the final step in the sucrose biosynthesis pathway. Arabidopsis thaliana genome codifies four SPP isoforms. In this study, the four Arabidopsis thaliana genes coding for SPP isoforms have been cloned, expressed in Escherichia coli and the kinetic and regulatory properties of the purified enzymes analysed.
View Article and Find Full Text PDFVascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1.
View Article and Find Full Text PDFBackground: Chlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production.
View Article and Find Full Text PDFPlant Sci
September 2015
We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants.
View Article and Find Full Text PDFFlorigen is a mobile signal released by the leaves that reaching the shoot apical meristem (SAM), changes its developmental program from vegetative to reproductive. The protein FLOWERING LOCUS T (FT) constitutes an important element of the florigen, but other components such as sugars, have been also proposed to be part of this signal. (1-5) We have studied the accumulation and composition of starch during the floral transition in Arabidopsis thaliana in order to understand the role of carbon mobilization in this process.
View Article and Find Full Text PDFThe response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability.
View Article and Find Full Text PDFFlowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown.
View Article and Find Full Text PDFPhototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics.
View Article and Find Full Text PDFPlant Cell Physiol
July 2011
It is widely considered that ADP-glucose pyrophosphorylase (AGP) is the sole source of ADP-glucose linked to bacterial glycogen and plant starch biosynthesis. Genetic evidence that bacterial glycogen biosynthesis occurs solely by the AGP pathway has been obtained with glgC⁻ AGP mutants. However, recent studies have shown that (i) these mutants can accumulate high levels of ADP-glucose and glycogen, and (ii) there are sources other than GlgC, of ADP-glucose linked to glycogen biosynthesis.
View Article and Find Full Text PDFWe developed a novel human leukocyte antigen HLA-ABC locus-specific quantitative real-time polymerase chain reaction (PCR) to determine the locus-specific gene expression of HLA-ABC in peripheral blood leukocytes (PBLs, n = 53), colon mucosa (n = 15), and larynx mucosa (n = 15). Laser-assisted tissue microdissection allowed us to study the selected cells without interference from surrounding stroma. We report evidence on the specificity of the technique, describing the HLA-ABC locus-specific gene expression patterns found in the PBLs and two solid tissues studied.
View Article and Find Full Text PDFDay-length and the circadian clock control critical aspects of plant development such as the onset of reproduction by the photoperiodic pathway. CONSTANS (CO) regulates the expression of a florigenic mobile signal from leaves to the apical meristem and thus is central to the regulation of photoperiodic flowering. This regulatory control is present in all higher plants, but the time in evolution when it arose was unknown.
View Article and Find Full Text PDFInflammation has been implicated as an etiological factor in different human cancers. Allelic variations in the genes implicated in inflammation are candidates as genetic determinants or markers of renal carcinoma risk. The present stud investigates whether polymorphisms of the genes that give rise to increases in the levels of proinflammatory cytokines and chemokines are associated with an increased risk of renal carcinoma.
View Article and Find Full Text PDF